线性代数笔记3-行列式的性质


前言

本笔记记录自B站《线性代数》高清教学视频 “惊叹号”系列 宋浩老师第三课


一、转置

D = ∣ 1 2 3 4 5 6 7 8 9 ∣ D= \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} D= 147258369
把原来的行转换成列,列转换成行,就叫转置
D T = ∣ 1 4 7 2 5 8 3 6 9 ∣ D^T= \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} DT= 123456789
转置再转置还等于原来的行列式
( D T ) T = D {(D^T)}^T=D (DT)T=D

二、行列式的性质

性质1

一个行列式的值和它的转置的值相等
D T = D D^T=D DT=D

例1:

D = ∣ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∣ D T = ∣ 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 ∣ D= \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{vmatrix} D^T= \begin{vmatrix} 1 & 5 & 9 & 13\\ 2 & 6 & 10 & 14\\ 3 & 7 & 11 &15\\ 4 & 8 & 12 & 16 \end{vmatrix} D= 15913261014371115481216 DT= 12345678910111213141516
我们想证明两个行列式的值相等。只需要证明这两个行列式展开的每一项值相同就行了。比如: D D D我们按照行列式展开性质1来按行展开, D T D^T DT按照行列式展开性质2来按列展开。我们知道不管按行展开还是案列展开行列式的值不变
D : ( − 1 ) N ( 1234 ) 1 × 6 × 11 × 16 D:{(-1)^{N(1234)}}1\times6\times11\times16 D(1)N(1234)1×6×11×16
D T : ( − 1 ) N ( 1234 ) 1 × 6 × 11 × 16 D^T:{(-1)^{N(1234)}}1\times6\times11\times16 DT:(1)N(1234)1×6×11×16
由此,我们可依次求得 D D D D T D^T DT的每一项元素值都相等。即可验证本性质。
注意:对行成立的性质,对列也成立。

性质2

行列式的两行(列)互换,值要变号

例1:

D = ∣ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∣ D 1 = ∣ 9 10 11 12 5 6 7 8 1 2 3 4 13 14 15 16 ∣ D= \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{vmatrix} D_1= \begin{vmatrix} 9 & 10 & 11 & 12 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 \\ 13 & 14 & 15 & 16 \end{vmatrix} D= 15913261014371115481216 D1= 95113106214117315128416
D 1 D_1 D1 D D D的第1行和第3行互换。结果是 D 1 = − D D_1=-D D1=D,我们如果想证明上述结论,只需要证明这两个行列式展开后的每一项都只相差一个符号,最后把这一个符号提出来就可证明。我们先把 D D D按行列式展开性质1来按行展开。
D : ( − 1 ) N ( 2341 ) 2 × 7 × 12 × 13 D:{(-1)^{N(2341)}}2\times7\times12\times13 D(1)N(2341)2×7×12×13
这次我们保持元素一致,所以就要用到行列式展开性质3,既不是按行也不是按列展开
D 1 : ( − 1 ) N ( 3214 ) + N ( 2341 ) 2 × 7 × 12 × 13 D_1:{(-1)^{N(3214)+N(2341)}}2\times7\times12\times13 D1(1)N(3214)+N(2341)2×7×12×13
D : N ( 2341 ) D:N(2341) D:N(2341) D 1 : N ( 2341 ) D_1:N(2341) D1:N(2341)一样。
我们只需要算出 D 1 : N ( 3214 ) D_1:N(3214) D1:N(3214)的符号就行了。我们可以通过数的方法求3214的逆序数。也可通过观察发现3214就是1234对换了1和3。1234的逆序数是0,为偶数,偶数是正号。经过一次对换后要变符号,所以3214为负号。
由此我们证明额性质2
发散思维*:其实我们通过观察可以发现,交换行前后: 2 × 7 × 12 × 13 2\times7\times12\times13 2×7×12×13的列标都没变,还是2341。只是行标由1234对换了1和3后,行标变成了3214。所以符号变一次

性质3

行列式两行(列)对应相等,行列式的值等于0

例1:

D = ∣ 2 3 4 5 1 0 0 0 2 3 4 5 8 8 8 1 ∣ D 1 = ∣ 2 3 4 5 1 0 0 0 2 3 4 5 8 8 8 1 ∣ D= \begin{vmatrix} 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 \\ 2 & 3 & 4 & 5 \\ 8 & 8 & 8 & 1 \end{vmatrix} D_1= \begin{vmatrix} 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 \\ 2 & 3 & 4 & 5 \\ 8 & 8 & 8 & 1 \end{vmatrix} D= 2128303840485051 D1= 2128303840485051
D 1 D_1 D1 D D D交换了1和3行得出的。根据性质2我们可得
D 1 = − D D_1=-D D1=D
通过观察我们发现 D 1 D_1 D1 D D D的每一个元素都相等,所以
D 1 = D D_1=D D1=D
D = − D D=-D D=D
2 D = 0 2D=0 2D=0
D = 0 D=0 D=0

性质4

某一行都乘以k,等于用k乘以这个行列式
∣ 1 2 3 4 k 5 k 6 k 7 8 9 ∣ = k ∣ 1 2 3 4 5 6 7 8 9 ∣ \begin{vmatrix} 1 & 2 & 3 \\ 4k & 5k & 6k \\ 7 & 8 & 9 \end{vmatrix}= k\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} 14k725k836k9 =k 147258369
这个性质我们一般不直接用,我们通常用它的推论。
推论:
一行都有公因子k,可以把k提到行列式外面去

例1:求怎么提公因子

∣ 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k ∣ \begin{vmatrix} 1k & 2k & 3k \\ 4k & 5k & 6k \\ 7k & 8k & 9k \end{vmatrix} 1k4k7k2k5k8k3k6k9k

k 3 ∣ 1 2 3 4 5 6 7 8 9 ∣ {k^3}\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} k3 147258369
结论:
n阶行列式的所有元素都有公因子k,则k向外提n次

性质5

行列式两行(列)对应成比例,则行列式的值等于0

例1:

∣ 1 2 3 1 1 1 8 8 8 ∣ = 8 ∣ 1 2 3 1 1 1 1 1 1 ∣ \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 8 & 8 & 8 \end{vmatrix} =8\begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} 118218318 =8 111211311
根据性质4我们把第三行的公因子8提出来,再根据性质3可知两行对应相等值等于0。可得这个行列式值等于0
由此我们可得推论:
行列式某一行都为0.则该行列式的值为0
我们可想象这一行的公因子都是0.套用性质5可以证明。

总结我们目前等于0的性质和推论
性质3:行列式两行(列)对应相等,行列式的值等于0
性质5:行列式两行(列)对应成比例,则行列式的值等于0
推论:行列式某一行都为0.则该行列式的值为0
这三个条件满足任意一个,该行列式等于0.
但是反过来不能证明,行列式等于0,则必定满足上述3个条件之一。

性质6

行列式的某一行,所有元素都是两项和。则该行列式可以表示成两个行列式相加,即:
∣ 1 2 3 7 + 8 2 + 3 9 + 10 8 8 9 ∣ = ∣ 1 2 3 7 2 9 8 8 9 ∣ + ∣ 1 2 3 8 3 10 8 8 9 ∣ \begin{vmatrix} 1 & 2 & 3 \\ 7+8 & 2+3 & 9+10 \\ 8 & 8 & 9 \end{vmatrix} =\begin{vmatrix} 1 & 2 & 3 \\ 7 & 2 & 9 \\ 8 & 8 & 9 \end{vmatrix}+ \begin{vmatrix} 1 & 2 & 3 \\ 8 & 3 & 10 \\ 8 & 8 & 9 \end{vmatrix} 17+8822+3839+109 = 178228399 + 1882383109

例1:

∣ b + c c + a a + b a + b b + c c + a c + a a + b b + c ∣ \begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{vmatrix} b+ca+bc+ac+ab+ca+ba+bc+ab+c
这题注意,分解的时候要一行一行分解,不能一下分解三行。分解某一行的时候,其他的行保持不变。所以应该
= ∣ b c a a + b b + c c + a c + a a + b b + c ∣ + ∣ c a b a + b b + c c + a c + a a + b b + c ∣ =\begin{vmatrix} b & c & a \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{vmatrix}+ \begin{vmatrix} c & a & b \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{vmatrix} = ba+bc+acb+ca+bac+ab+c + ca+bc+aab+ca+bbc+ab+c
= ∣ b c a a b c c + a a + b b + c ∣ + ∣ b c a b c a c + a a + b b + c ∣ + ∣ c a b a b c c + a a + b b + c ∣ + ∣ c a b b c a c + a a + b b + c ∣ = \begin{vmatrix} b & c & a \\ a & b & c \\ c+a & a+b & b+c \end{vmatrix}+ \begin{vmatrix} b & c & a \\ b & c & a \\ c+a & a+b & b+c \end{vmatrix}+ \begin{vmatrix} c & a & b \\ a & b & c \\ c+a & a+b & b+c \end{vmatrix}+ \begin{vmatrix} c & a & b \\ b & c & a \\ c+a & a+b & b+c \end{vmatrix} = bac+acba+bacb+c + bbc+acca+baab+c + cac+aaba+bbcb+c + cbc+aaca+bbab+c
⋮ \vdots
以此类推,最终共分解成8个行列式相加

性质7(重点)

行列式的某一行(列)的所有元素乘以k,加到另一行(列)上去。行列式的值不变
证明该性质
∣ 1 2 3 1 1 0 9 9 10 ∣ \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 9 & 9 & 10 \end{vmatrix} 1192193010
为验证该性质,我们把第一行所有元素都乘以5.然后加到第二行上去,即可得
∣ 1 2 3 1 + 5 1 + 10 0 + 15 9 9 10 ∣ \begin{vmatrix} 1 & 2 & 3 \\ 1+5 & 1+10 & 0+15 \\ 9 & 9 & 10 \end{vmatrix} 11+5921+10930+1510
根据性质6,我们可以把该行列式分开
= ∣ 1 2 3 1 1 0 9 9 10 ∣ + ∣ 1 2 3 5 10 15 9 9 10 ∣ =\begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 9 & 9 & 10 \end{vmatrix}+ \begin{vmatrix} 1 & 2 & 3 \\ 5 & 10 & 15 \\ 9 & 9 & 10 \end{vmatrix} = 1192193010 + 159210931510
然后根据性质5可知第二个行列式第一行和第二行对应成比例,第二行是第一行的5倍。所以第二个行列式的值为0。所以可证明性质7成立。

例1:

∣ 1 2 0 1 2 3 10 0 0 3 5 18 5 10 15 4 ∣ \begin{vmatrix} 1 & 2 & 0 & 1 \\ 2 & 3 & 10 & 0 \\ 0 & 3 & 5 & 18 \\ 5 & 10 & 15 & 4\\ \end{vmatrix} 12052331001051510184
这种所有元素全是数字的行列式叫纯数字行列式,这种行列式最终目的是把它化成上三角行列式来解,也就是把左下部分都处理成0。
第一步:先看第一行第一列是不是1,这个行列式正好是1。(不是1的情况我们例2来看)
第二步:把第二行第一列处理成0。我们可以根据性质6把第一行乘以-2。然后加到第二行上去。就得
= ∣ 1 2 0 1 2 − 2 3 − 4 10 − 0 0 − 2 0 3 5 18 5 10 15 4 ∣ = ∣ 1 2 0 1 0 − 1 10 − 2 0 3 5 18 5 10 15 4 ∣ =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 2-2 & 3-4 & 10-0 & 0-2 \\ 0 & 3 & 5 & 18 \\ 5 & 10 & 15 & 4\\ \end{vmatrix} =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 10 & -2 \\ 0 & 3 & 5 & 18 \\ 5 & 10 & 15 & 4\\ \end{vmatrix} = 122052343100100515102184 = 10052131001051512184
第三步:把第三行第一列处理成0,现在已经是0了,所以跳过
第五步:把第四行第一列处理成0,用第一行乘以-5,加到第四行上去
= ∣ 1 2 0 1 0 − 1 10 − 2 0 3 5 18 5 − 5 10 − 10 15 − 0 4 − 5 ∣ = ∣ 1 2 0 1 0 − 1 10 − 2 0 3 5 18 0 0 15 − 1 ∣ =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 10 & -2 \\ 0 & 3 & 5 & 18 \\ 5-5 & 10-10 & 15-0 & 4-5\\ \end{vmatrix} =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 10 & -2 \\ 0 & 3 & 5 & 18 \\ 0 & 0 & 15 & -1\\ \end{vmatrix} = 1005521310100105150121845 = 1000213001051512181
第六步:把第三行第二列处理成0。用第二行乘以3加到第三行
= ∣ 1 2 0 1 0 − 1 10 − 2 0 3 − 3 5 + 30 18 − 6 0 0 15 − 1 ∣ = ∣ 1 2 0 1 0 − 1 10 − 2 0 0 35 12 0 0 15 − 1 ∣ =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 10 & -2 \\ 0 & 3-3 & 5+30 & 18-6 \\ 0 & 0 & 15 & -1\\ \end{vmatrix} =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 10 & -2 \\ 0 & 0 & 35 & 12 \\ 0 & 0 & 15 & -1\\ \end{vmatrix} = 1000213300105+3015121861 = 10002100010351512121
第七步:把第四行第三列处理成0。用第三行乘以 − 3 7 -\frac{3}{7} 73,再加到第四行
= ∣ 1 2 0 1 0 − 1 10 − 2 0 0 35 12 0 0 15 − 15 − 1 − 36 7 ∣ = ∣ 1 2 0 1 0 − 1 10 − 2 0 0 35 12 0 0 0 − 43 7 ∣ =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 10 & -2 \\ 0 & 0 & 35 & 12 \\ 0 & 0 & 15-15 & -1-\frac{36}{7}\\ \end{vmatrix} =\begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 10 & -2 \\ 0 & 0 & 35 & 12 \\ 0 & 0 & 0 & -\frac{43}{7}\\ \end{vmatrix} = 1000210001035151512121736 = 100021000103501212743
第八步:根据前面学到的,上三角行列式的值是对角线上所有元素的乘积
= 1 × ( − 1 ) × 35 × ( − 43 7 ) = 215 =1\times(-1)\times35\times(-\frac{43}{7})=215 =1×(1)×35×(743)=215
总结:把行列式处理成为上三角行列式的过程是行按自然顺序,列也按自然顺序,处理成0。

例2:

∣ 8 2 0 1 1 3 10 0 9 3 5 18 3 10 15 4 ∣ \begin{vmatrix} 8 & 2 & 0 & 1 \\ 1 & 3 & 10 & 0 \\ 9 & 3 & 5 & 18 \\ 3 & 10 & 15 & 4\\ \end{vmatrix} 81932331001051510184
行列式第一行第一列不是1的时候应该怎么求最简单。
通过观察我们发现第二行第一列是1,根据性质2我们可以把第二行和第一行交换并变符号。这样我们就可以根据例1的步骤来解这个行列式了。
= − ∣ 1 3 10 0 8 2 0 1 9 3 5 18 3 10 15 4 ∣ … =-\begin{vmatrix} 1 & 3 & 10 & 0 \\ 8 & 2 & 0 & 1 \\ 9 & 3 & 5 & 18 \\ 3 & 10 & 15 & 4\\ \end{vmatrix}\dots = 18933231010051501184
总结:
1.我们总是优先把第一行第一列处理成1,然后按照先处理第一列,再处理第二列等等的方法依次把行列式处理成上三角行列式的方法来解题。当然也有其他的解题方法,比如把第四列乘以-3,加到第三列上或把行列式处理成下三角行列式等解题思路。这样一是容易记乱,最终导致计算错误。二是肯定没有上述方法使用的步骤少。所以我们优先使用上述方法来解纯数字行列式
2.当第一列所有元素都处理完后也就是:“第一行第一列是1,其他行第一列是0”。此时第一行就不再参与后面的运算了。否则再把第一行乘以k并加到第m行时,刚才处理好的第m行第一列就从原来的0变成1*k=k了。前面算好的第一列就白算了。所以,其他列也是一样。当算好后就不再参与后面的运算了
3.如果在处理行列式的过程中需要乘以一个负数-k,一定不要直接把他理解为一个元素直接去减k。这样做到最后很可能搞不清楚是谁减谁。应该永远在脑子里记住是:“一行乘以-k,加到第m行上去。”


总结

1.熟记所有性质,并灵活运用这些性质来解行列式
2.最重要的性质7,很重要,但很常用,也很容易错

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值