一个和二维泊松求和有关的公式(推导Ewald级数中有用,运用了2D泊松求和公式,傅里叶变换的位移性质)

20 篇文章 0 订阅
16 篇文章 2 订阅

∑ ( m , n ) ∈ Z f ( x − m T x , y − n T y ) ⋅ e i ( q x ⋅ m T x + q y ⋅ n T y ) = e i q x ⋅ x + i q y ⋅ y ∑ ( m , n ) ∈ Z f ( x − m T x , y − n T y ) ⋅ e − i ( x − m T x ) q x − i ( y − n T y ) q y = e i q x ⋅ x + i q y ⋅ y 1 T x T y ∑ ( m , n ) ∈ Z f ^ ( 2 π m T x + q x , 2 π n T y + q y ) ⋅ e i 2 π m T x ⋅ x e i 2 π n T y y = 1 T x T y ∑ ( m , n ) ∈ Z f ^ ( 2 π m T x + q x , 2 π n T y + q y ) ⋅ e i ( 2 π m T x + q x ) ⋅ x ⋅ e i ( 2 π n T y + q y ) ⋅ y \LARGE \begin{aligned} & \sum_{(m, n) \in Z} f\left(x-m T_{x}, y-n T_{y}\right) \cdot e^{i\left(q_{x} \cdot m T_{x}+q_{y} \cdot n T_{y}\right)} \\ =& e^{i q_{x} \cdot x+i q_{y} \cdot y} \sum_{(m, n) \in Z} f\left(x-m T_{x}, y-n T_{y}\right) \cdot e^{-i\left(x-m T_{x}\right) q_{x}-i\left(y-n T_{y}\right) q_{y}} \\ =& e^{i q_{x} \cdot x+i q_{y} \cdot y} \frac{1}{T_{x} T_{y}} \sum_{(m, n) \in Z} \hat{f}\left(\frac{2 \pi m}{T_{x}}+q_{x}, \frac{2 \pi n}{T_{y}}+q_{y}\right) \cdot e^{i \frac{2 \pi m}{T_{x}} \cdot x} e^{i \frac{2 \pi n}{T_{y}} y} \\ =& \frac{1}{T_{x} T_{y}} \sum_{(m, n) \in Z} \hat{f}\left(\frac{2 \pi m}{T_{x}}+q_{x}, \frac{2 \pi n}{T_{y}}+q_{y}\right) \cdot e^{i\left(\frac{2 \pi m}{T_x}+q_{x}\right) \cdot x} \cdot e^{i\left(\frac{2 \pi n}{T_{y}}+q_{y}\right) \cdot y} \end{aligned} ===(m,n)Zf(xmTx,ynTy)ei(qxmTx+qynTy)eiqxx+iqyy(m,n)Zf(xmTx,ynTy)ei(xmTx)qxi(ynTy)qyeiqxx+iqyyTxTy1(m,n)Zf^Tx2πm+qx,Ty2πn+qyeiTx2πmxeiTy2πnyTxTy1(m,n)Zf^Tx2πm+qx,Ty2πn+qyei(Tx2πm+qx)xei(Ty2πn+qy)y

它的推导用到了2D泊松求和以及傅里叶变换的位移性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值