∑ ( m , n ) ∈ Z f ( x − m T x , y − n T y ) ⋅ e i ( q x ⋅ m T x + q y ⋅ n T y ) = e i q x ⋅ x + i q y ⋅ y ∑ ( m , n ) ∈ Z f ( x − m T x , y − n T y ) ⋅ e − i ( x − m T x ) q x − i ( y − n T y ) q y = e i q x ⋅ x + i q y ⋅ y 1 T x T y ∑ ( m , n ) ∈ Z f ^ ( 2 π m T x + q x , 2 π n T y + q y ) ⋅ e i 2 π m T x ⋅ x e i 2 π n T y y = 1 T x T y ∑ ( m , n ) ∈ Z f ^ ( 2 π m T x + q x , 2 π n T y + q y ) ⋅ e i ( 2 π m T x + q x ) ⋅ x ⋅ e i ( 2 π n T y + q y ) ⋅ y \LARGE \begin{aligned} & \sum_{(m, n) \in Z} f\left(x-m T_{x}, y-n T_{y}\right) \cdot e^{i\left(q_{x} \cdot m T_{x}+q_{y} \cdot n T_{y}\right)} \\ =& e^{i q_{x} \cdot x+i q_{y} \cdot y} \sum_{(m, n) \in Z} f\left(x-m T_{x}, y-n T_{y}\right) \cdot e^{-i\left(x-m T_{x}\right) q_{x}-i\left(y-n T_{y}\right) q_{y}} \\ =& e^{i q_{x} \cdot x+i q_{y} \cdot y} \frac{1}{T_{x} T_{y}} \sum_{(m, n) \in Z} \hat{f}\left(\frac{2 \pi m}{T_{x}}+q_{x}, \frac{2 \pi n}{T_{y}}+q_{y}\right) \cdot e^{i \frac{2 \pi m}{T_{x}} \cdot x} e^{i \frac{2 \pi n}{T_{y}} y} \\ =& \frac{1}{T_{x} T_{y}} \sum_{(m, n) \in Z} \hat{f}\left(\frac{2 \pi m}{T_{x}}+q_{x}, \frac{2 \pi n}{T_{y}}+q_{y}\right) \cdot e^{i\left(\frac{2 \pi m}{T_x}+q_{x}\right) \cdot x} \cdot e^{i\left(\frac{2 \pi n}{T_{y}}+q_{y}\right) \cdot y} \end{aligned} ===(m,n)∈Z∑f(x−mTx,y−nTy)⋅ei(qx⋅mTx+qy⋅nTy)eiqx⋅x+iqy⋅y(m,n)∈Z∑f(x−mTx,y−nTy)⋅e−i(x−mTx)qx−i(y−nTy)qyeiqx⋅x+iqy⋅yTxTy1(m,n)∈Z∑f^⎝⎜⎛Tx2πm+qx,Ty2πn+qy⎠⎟⎞⋅eiTx2πm⋅xeiTy2πnyTxTy1(m,n)∈Z∑f^⎝⎜⎛Tx2πm+qx,Ty2πn+qy⎠⎟⎞⋅ei(Tx2πm+qx)⋅x⋅ei(Ty2πn+qy)⋅y
它的推导用到了2D泊松求和以及傅里叶变换的位移性质。