目录
image quality-assessment 2019开源
git clone https://github.com/idealo/image-quality-assessment.git
cd image-quality-assessment
项目提供了一个简单的示例脚本,用于评估图像质量。你可以通过以下命令运行示例:
python evaluate_image.py --image_path path_to_your_image.jpg
原文链接:https://blog.csdn.net/gitblog_00290/article/details/141046370
pytorch piq
GitHub - photosynthesis-team/piq: Measures and metrics for image2image tasks. PyTorch.
import piq
# 计算 SSIM 分数
ssim_score = piq.ssim(image_tensor, reference_image_tensor, data_range=1.0)
print(f"SSIM score: {ssim_score.item()}")
CVPR2021:
作者 | Zhihua Wang, Haotao Wang, Tianlong Chen, Zhangyang Wang, Kede Ma
单位 | 香港城市大学;得克萨斯大学奥斯汀分校
论文 | https://arxiv.org/abs/2105.06747
代码 | https://github.com/wangzhihua520/troubleshooting_BIQA
2020的可以参考:
cnn图像质量评价_AI视觉网奇的博客-CSDN博客_cnn 评分
CVPR 2020 论文大盘点-图像质量评价篇_我爱计算机视觉的博客-CSDN博客
今天跟大家推荐一个工具,来自德国商品比价服务商idealo开源的图像质量评价工具,仅需要一行命令就可以实现。
开源地址:
https://github.com/idealo/image-quality-assessment
安装非常简答:
对一幅图像进行质量评价:
./predict \
--docker-image nima-cpu \
--base-model-name MobileNet \
--weights-file $(pwd)/models/MobileNet/weights_mobilenet_technical_0.11.hdf5 \
--image-source $(pwd)/src/tests/test_images/42039.jpg
对一个文件夹下的所有图像进行质量评价:
./predict \
--docker-image nima-cpu \
--base-model-name MobileNet \
--weights-file $(pwd)/models/MobileNet/weights_mobilenet_technical_0.11.hdf5 \
--image-source $(pwd)/src/tests/test_images
这个工具还是很靠谱的,其参考的是Google 2017年研究论文 NIMA: Neural Image Assessment" (https://arxiv.org/pdf/1709.05424.pdf),另外这家公司本身也在自己的互联网服务中使用该工具,用于用户上传的酒店图像的挑选和推荐。
实际上该工具有美学评价(侧重于图像好看不好看)和技术评价(侧重于图像质量好不好)两方面。
官方已经给出了这两个的预训练模型。
当然,并不是每个人都是做这两个方面,比如我刚才说的监控场景的图像质量评价,那你就需要自己训练了。
作者们也提供了简单易用的训练接口。
标注好样本,配置好环境后,训练也只需要一行命令:
./train-local \
--config-file $(pwd)/models/MobileNet/config_technical_cpu.json \
--samples-file $(pwd)/data/TID2013/tid_labels_train.json \
--image-dir /path/to/image/dir/local