图像质量评价2024

目录

image-quality-assessment

pytorch piq


image quality-assessment 2019开源

git clone https://github.com/idealo/image-quality-assessment.git
cd image-quality-assessment

项目提供了一个简单的示例脚本,用于评估图像质量。你可以通过以下命令运行示例:

python evaluate_image.py --image_path path_to_your_image.jpg
                        
原文链接:https://blog.csdn.net/gitblog_00290/article/details/141046370

pytorch piq

GitHub - photosynthesis-team/piq: Measures and metrics for image2image tasks. PyTorch.

import piq

# 计算 SSIM 分数

ssim_score = piq.ssim(image_tensor, reference_image_tensor, data_range=1.0)

print(f"SSIM score: {ssim_score.item()}")

CVPR2021:

作者 | Zhihua Wang, Haotao Wang, Tianlong Chen, Zhangyang Wang, Kede Ma

单位 | 香港城市大学;得克萨斯大学奥斯汀分校

论文 | https://arxiv.org/abs/2105.06747

代码 | https://github.com/wangzhihua520/troubleshooting_BIQA

2020的可以参考:

cnn图像质量评价_AI视觉网奇的博客-CSDN博客_cnn 评分

CVPR 2020 论文大盘点-图像质量评价篇_我爱计算机视觉的博客-CSDN博客

今天跟大家推荐一个工具,来自德国商品比价服务商idealo开源的图像质量评价工具,仅需要一行命令就可以实现。

开源地址:

https://github.com/idealo/image-quality-assessment

安装非常简答:

对一幅图像进行质量评价:

./predict  \--docker-image nima-cpu \--base-model-name MobileNet \--weights-file $(pwd)/models/MobileNet/weights_mobilenet_technical_0.11.hdf5 \--image-source $(pwd)/src/tests/test_images/42039.jpg

对一个文件夹下的所有图像进行质量评价:

./predict  \--docker-image nima-cpu \--base-model-name MobileNet \--weights-file $(pwd)/models/MobileNet/weights_mobilenet_technical_0.11.hdf5 \--image-source $(pwd)/src/tests/test_images

这个工具还是很靠谱的,其参考的是Google 2017年研究论文 NIMA: Neural Image Assessment" (https://arxiv.org/pdf/1709.05424.pdf),另外这家公司本身也在自己的互联网服务中使用该工具,用于用户上传的酒店图像的挑选和推荐。

实际上该工具有美学评价(侧重于图像好看不好看)和技术评价(侧重于图像质量好不好)两方面。

官方已经给出了这两个的预训练模型。

当然,并不是每个人都是做这两个方面,比如我刚才说的监控场景的图像质量评价,那你就需要自己训练了。

作者们也提供了简单易用的训练接口。

标注好样本,配置好环境后,训练也只需要一行命令:

./train-local \--config-file $(pwd)/models/MobileNet/config_technical_cpu.json \--samples-file $(pwd)/data/TID2013/tid_labels_train.json \--image-dir /path/to/image/dir/local
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值