pytorch 卷积核 2d卷积,卷积核是3维的

这篇博客探讨了PyTorch中3*3卷积核的两种操作:不降尺寸做法和降尺寸做法。不降尺寸做法保持输入尺寸不变,而降尺寸做法通过设置stride=2和padding=1来减小输出尺寸。
摘要由CSDN通过智能技术生成

目录

3*3卷积核不降尺寸做法:

如果图像输入是64*64*3 ,3个通道是怎么卷积的

如果通道是1280, 卷积核3*3,那么真实的卷积核尺寸是3*3*1280?

示例


3*3卷积核不降尺寸做法:

self.conv_1x1_last = conv_bn_relu(nin=96, nout=96, kernel_size=3, stride=1, padding=1, bias=False)

降尺寸做法:

conv_bn_relu(nin=80, nout=96, kernel_size=3, stride=2, padding=1, bias=False)

如果图像输入是64*64*3 ,3个通道是怎么卷积的

对于输入图像尺寸为 64×64×3(即宽度为64,高度为64,深度为3,通常对应RGB图像的三个

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值