EvoNorms

本文探讨了正则化层和激活层的协同设计,通过将它们视为单一构建模块进行研究。通过在超大batch规格下训练并可视化学习过程,EvoNorm-B0显示出了优于BN-RELU和ResNet-50的泛化性能,同时在优化和泛化性能上都有所提升。提供了相关代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

evolving normalization activation layers

 

本篇文章则通过将正则化层和激活层公式化为一个单独的构建模块,来研究他们的协同设计

 

同时,本文还进行了具有超大batch规格的学习动态过程的可视化。在训练设置相同的情况下,相比BN-RELU和ResNet-50,虽然训练损失较大,但是,EvoNorm-B0展现了更好的泛化性能。在其他所有的情况下,EvoNorm同时实现了优化性能和泛化性能的提升。

 

代码:

https://github.com/lonePatient/EvoNorms_PyTorch/blob/master/models/normalization.py

import torch
import torch.nn as nn
from torch.nn import init
from torch.nn.parameter import Parameter

def instance_std(x, eps=1e-5):
    N,C,H,W = x.size()
    x1 = x.reshape(N*C,-1)
    var = x1.var(dim=-1, keepdim&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值