python tpr fpr

当使用Python进行机器学习时,特别是在评估分类器性能时,如果数据分布均匀,TPR(真正例率)和FPR(假正例率)的表现通常较好。然而,当数据分布不均衡,尤其是在边界情况较少时,这两个指标可能会显示出不佳的性能。
摘要由CSDN通过智能技术生成

数据分布比较均匀效果可以,数据分布不均匀,两头比较少,效果不好。

    labels = read_labels(u"labels.txt")
    predicts = read_Feautures(u"scores.txt")
    levels=(1e-6, 1e-5, 1e-4, 1e-3, 1e-2)
    fpr, tpr, threshold1s=sklearn.metrics.roc_curve(labels,predicts)

    interp = interpolate.interp1d(fpr, tpr)
    tpr_at_fpr = [interp(x) for x in levels]

    for index, data in enumerate(tpr_at_fpr):
        print(data,levels[index])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值