yoloe tensorrt rknn推理实践

本文介绍了PPYOLOE在PyTorch中使用TensorRT和RKNN进行推理的实践过程,包括训练数据的处理、模型导出到ONNX和TensorRT的步骤,以及遇到的问题和解决办法。此外,还讨论了ONNXRuntime部署PP-YOLOE时的挑战和转换为TRT、OpenVINO时的失败原因。
摘要由CSDN通过智能技术生成

目录

百度设计的网络,网络优化点

pytorch版有tensorrt:

训练自己的数据:

导出onnx,再导出tensorrt实验报错:

onnxsim成功:

 python版tensorrt开源调用:

tensorrt可以调用:

但是有个问题:

tensorrt支持

PPYOLOE_pytorch 测试

转rknn实践成功笔记

转rknn anchor_points问题:

使用ONNXRuntime部署PP-YOLOE目标检测

生成的onnx不能转trt,openvino

有Android和ios示例项目

PP-YOLOE行人检测+HRNet人体骨骼关键点检测


这是2022年第一个关于YOLO的改版,该版本由百度提出,称之为YOLOE,是目前各项指标sota的工业目检测器,性能sota且部署相对友好。

Paddle Detection_AI视觉网奇的博客-CSDN博客

百度设计的网络,网络优化点

该检测器的设计机制包括:

  • Anchor free无锚盒机制

  • 可扩展的backbone和neck,由CSPRepResStage(CSPNet+RMNet)构成

  • 使用Varifocal Loss(VFL)Distribution focal loss(DFL)的头部机制ET-head

  • 动态标签分配算法Task Alignment Learning(TAL&#x

TensorRT和RKNN都是用于深度学习推理加速的工具。TensorRT是NVIDIA开发的推理引擎,可以针对不同的硬件平台(如GPU)进行优化,提高深度神经网络的推理速度,同时还提供了量化、融合、剪枝等优化技术,以及很好的支持C++和Python等编程语言。而RKNN是Rockchip开发的神经网络推理框架,可以将训练好的模型通过转换生成RKNN模型,并在Rockchip的AI芯片上进行快速推理TensorRT转RKNN的过程可以分为以下几步: 1. 导出TensorRT模型:使用TensorRT API将已经在TensorFlow或PyTorch中训练好的模型导出为TensorRT模型。这一步可以使用TensorRT提供的Python或C++接口完成。 2. 转换为ONNX格式:由于RKNN要求输入RKNN模型为ONNX格式,因此需要将TensorRT模型转换为ONNX格式。可以使用ONNX Runtime提供的Python或C++接口将TensorRT模型转换为ONNX格式。 3. 转换为RKNN模型:使用Rockchip提供的rknn-toolkit工具,将ONNX格式的模型转换为RKNN格式。可以通过命令行或Python脚本来完成转换。转换过程中需要配置模型的输入输出节信息、计算资源限制等参数。 4. 部署和推理:将生成的RKNN模型部署在Rockchip的AI芯片上,然后通过调用RKNN SDK提供的API来进行推理。RKNN提供了Python和C++接口,可以根据需求选择合适的接口进行开发。 通过将TensorRT模型转换为RKNN模型,可以在Rockchip AI芯片上实现深度学习模型的高效推理。这种转换过程可以使得在移动和嵌入式设备上实现更高性能和更低功耗的推理能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值