人脸属性编辑

StyleFlow允许对人脸属性进行约束采样和可控编辑。通过联合反向编码和持续正则化流CNF模块,可以精确地改变如年龄、性别等属性,而不影响其他特征。此技术适用于娱乐应用、数据扩充和产品风格设计,相关代码已开源。
摘要由CSDN通过智能技术生成

目录

StyleFlow


StyleFlow

对于属性约束采样:

一张图像Io经由StyleGAN等生成器反向编码后会得到18x512维度的W特征向量,每一个W代表某一个高层级的风格属性,而一张图像经由特定属性分类器分类回归后会得到不同的属性值。在这里有个对应关系,一张图像如果它可以被分类到相应的属性比如戴眼镜、年龄30、性别男等,那么它的W特征空间也应该是可以分类到相应属性的。所以,联合反向编码JRE在特定约束属性下持续对W特征隐码正则化,从而获得对应的512维的Zo隐码向量,Zo是一个0均值的正态分布向量。

对于属性可控编辑:

在获得属性约束采样后的Zo后,假如我们要编辑某个属性比如年龄,那么只要改变该属性对应的属性值,然后再由Zo结合目标属性在约束持续正则化流CNF(conditional continuous normalizing flow )模块的前向推理下生成对应已解耦了的W特征向量,之后组合成一个18x512维的具有高层级风格属性的隐码空间,再经由相应的StyleGAN生成器生成相应的图像,即可得到已编辑了某个属性的图像,且该图像仅修改了相应的属性而不会对其他属性产生影响。

约束持续正则化流CNF模块:

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值