TensorFlow 多卡训练 tf多卡训练

目录

export TF_GPU_ALLOCATOR=cuda_malloc_async

🔧 具体作用

优势

🧩 依赖条件

✅ 设置方式(Linux/macOS)

显存按需增长


export TF_GPU_ALLOCATOR=cuda_malloc_async

是设置 TensorFlow 使用 CUDA 异步内存分配器 的环境变量。这个设置可以带来性能上的优化,尤其在使用 GPU 的时候。


🔧 具体作用

TF_GPU_ALLOCATOR=cuda_malloc_async 的作用是:

让 TensorFlow 使用 CUDA 11.2+ 引入的 cudaMallocAsync API 来进行 GPU 显存的分配和释放。


优势

  1. 提高性能

    • 异步内存分配减少了 GPU 上的锁竞争。

    • 在多线程/并发数据加载和训练的情况下,效率明显提升。

  2. 减少内存碎片

    • cudaMallocAsync 使用内存池机制,比默认的 cudaMalloc 更智能地管理内存,减少碎片。

  3. 更高效的资源利用

    • 在一些模型(比如 Transformer)或动态图应用中,更容易避免 OOM(Out of Memory)。


🧩 依赖条件

  • CUDA ≥ 11.2

  • NVIDIA 驱动 ≥ 460

  • TensorFlow ≥ 2.10(强烈建议 ≥ 2.11)


✅ 设置方式(Linux/macOS)

在终端或脚本中加上:

export TF_GPU_ALLOCATOR=cuda_malloc_async

然后运行你的训练脚本:

python train.py

调用代码:

export CUDA_VISIBLE_DEVICES=5,7

export TF_GPU_ALLOCATOR=cuda_malloc_async

python nlf/tf/main.py --train 

            with tf.device('/GPU:0'):
                loaded_model = tf.saved_model.load(FLAGS.load_backbone_from)

显存按需增长

for gpu in tf.config.experimental.list_physical_devices('GPU'):
    tf.config.experimental.set_memory_growth(gpu, True)
list_physical_devices('GPU')
列出当前可用的物理 GPU 设备。

set_memory_growth(gpu, True)
设置这个 GPU 为“按需增长显存”模式。也就是说,TensorFlow 只会根据需要逐步分配显存,而不是一启动就吃满整个 GPU。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值