TensorFlow各版本下载地址,强烈推荐

 

win10 cuda9可以安装:

pip install tensorflow-gpu==1.8.0 --user -i https://pypi.tuna.tsinghua.edu.cn/simple

keras安装

pip install keras -U --pre

 

TensorFlow各版本自主下载地址:

cpu版本:

pip install 链接:

https://pypi.python.org/pypi/tensorflow/1.4.0

下载地址链接:

https://pypi.org/project/tensorflow/#files

gpu版本:

https://pypi.python.org/pypi/tensorflow-gpu/1.4.0

现在不提供下载了,只提供安装命令:比如1.5.0版本

pip install tensorflow-gpu==1.5.0

切换版本号:只要把后面的版本号改一下就行了

 

一、tensorflow各个版本需要的CUDA版本以及Cudnn的对应关系
1.1 对应表格

相应的网址为:

https://www.tensorflow.org/install/source#common_installation_problems

https://www.tensorflow.org/install/source_windows

版本    Python 版本    编译器    编译工具    cuDNN    CUDA
tensorflow_gpu-2.0.0-alpha0    2.7、3.3-3.6    GCC 4.8    Bazel 0.19.2    7.4.1以及更高版本    CUDA 10.0 (需要 410.x 或更高版本)
tensorflow_gpu-1.13.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.19.2    7.4    10.0
tensorflow_gpu-1.12.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.15.0    7    9
tensorflow_gpu-1.11.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.15.0    7    9
tensorflow_gpu-1.10.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.15.0    7    9
tensorflow_gpu-1.9.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.11.0    7    9
tensorflow_gpu-1.8.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.10.0    7    9
tensorflow_gpu-1.7.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.9.0    7    9
tensorflow_gpu-1.6.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.9.0    7    9
tensorflow_gpu-1.5.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.8.0    7    9
tensorflow_gpu-1.4.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.5.4    6    8
tensorflow_gpu-1.3.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.4.5    6    8
tensorflow_gpu-1.2.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.4.5    5.1    8
tensorflow_gpu-1.1.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.4.2    5.1    8
tensorflow_gpu-1.0.0    2.7、3.3-3.6    GCC 4.8    Bazel 0.4.2    5.1    8
现在NVIDIA的显卡驱动程序已经更新到 10.1版本,最新的支持CUDA 10.1版本的cuDNN为7.5.0

1.2 CUDA的命名规则

下面以几个例子来说

(1)CUDA 9.2

CUDA  9.2.148

(2)CUDA 10.0

CUDA 10.0.130.411.31(后面的411.31对应更具体的版本号)

(3)CUDA 10.1

CUDA 10.1.105.418.96(后面的418.96对应更具体的版本号)

更多详细的请参考如下官网:

https://developer.nvidia.com/cuda-toolkit-archive

1.3 如何查看自己所安装的CUDA的版本:

(1)直接在NVIDIA的控制面板里面查看NVCUDA.DLL的版本。

注意:这里网上有很多说法是错误的,这个版本并不能绝对说明自己所安装的CUDA工具包一定这个版本

(2)通过命令查看:nvcc -V 或者是nvcc --version都可以,但前提是添加了环境变量

(3)直接通过文件查看,这里分为Linux和windows两种情况

在windows平台下,可以直接进入CUDA的安装目录,比如我的是:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2   里面有一个version.txt的文本文件,直接打开即可,也可以使用命令,即

首先进入到安装目录,然后执行:type version.txt 即可查看

在Linux平台下:

同windows类似,进入到安装目录,然后执行  cat version.txt 命令
 

 

如果想在window系统自己编译TensorFlow1.6,可以参考:

https://blog.csdn.net/jacke121/article/details/80411718

https://blog.csdn.net/jacke121/article/details/80427283

 

如果想在window系统下编译TensorFlow动态库,可以参考:

https://blog.csdn.net/jacke121/article/details/80473648

欢迎关注我的公众号,最新资讯会在这里与大家及时分享。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读