OCtaveResNet 测试

这篇博客介绍了OctaveResNet在256*256分辨率下,相较于resnet50速度从17ms增加到52ms的测试结果。同时提到了resnet34在相同条件下也需要33ms。提供了相关的代码仓库链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

代码地址:

https://github.com/lxtGH/OctaveConv_pytorch

 

256*256 resnet50的速度原来是17ms,新的52ms

 

下面这个需要33ms

if __name__ == '__main__':
    model = DataSetAwareResnet50().cuda()
    import time

    for i in range(10):
        img = torch.Tensor(1, 3, 256, 256).cuda()
        with torch.no_grad():
            torch.cuda.synchronize()
            start = time.time()
            out = model(img)
            torch.cuda.synchronize()
            print('time.{}'.format(time.time() - start))

 

resnet34本机需要33ms

代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值