这篇论文发表在ECCV2020上面,是对于STM的改进。STM存在一个缺点,就是在做query和memory的key之间的matching时,将所有的情况都建立了联系,这种处理是一种non-local的方式,而VOS问题大多数情况下是一种local的情况。所以作者提出了一种Kernelized Memory Network(KMN)来解决这一问题;此外作者还采用了一种Hide-and-Seek策略(17年ICCV一篇若监督的论文),在预训练时人为地对图像的某些区域进行遮挡,以提升物体遮挡识别的鲁棒性。
上图中上半部分是传统的STM,他只是用query去匹配memory,这种non-local的匹配方式很可能造成query中多个目标匹配memory中同一个目标的问题。由于帧之间的幅度很小,所以显然我们要追踪的目标在上一帧mask附近,而不会离他太远。因此VOS是一个local的问题。在作者加入了一个Gaussian Kernal的约束后,就变成了一种适用于VOS的local的solution。
如上图,整个流程结构与STM是完全一样的,只有紫色的Kernalized Memory Read部分有所改动。
首先是STM中的流程&