贝叶斯滤波

转载自:http://www.cnblogs.com/ycwang16/p/5995702.html 

认知计算,还要从贝叶斯滤波的基本思想讲起。这一部分,我们先回顾贝叶斯公式的数学基础,然后再来介绍贝叶斯滤波器。

(一). 概率基础回顾

我们先来回顾一下概率论里的基本知识:

1. XX:  表示一个随机变量,如果它有有限个可能的取值{x1,x2,⋯,xn}{x1,x2,⋯,xn}.

2. p(X=xi)p(X=xi):表示变量XX的值为 xixi的概率

3. p(⋅)p(⋅):称为概率质量函数(probability mass function).

    例如:一个家里有3个房间,机器人在各个房间的概率为 p(room)={0.1,0.3,0.6}p(room)={0.1,0.3,0.6}.

4. 如果XX在连续空间取值,p(x)p(x)称为概率密度函数(probability density function),

 

p(x∈(a,b))=∫abp(x)dxp(x∈(a,b))=∫abp(x)dx

image

图1. 概率密度函数曲线示例

5. 联合概率:p(X=x  and  Y=y)=p(x,y)p(X=x  and  Y=y)=p(x,y),称为联合概率密度分布。如果XX和YY是相互独立的随机变量,p(x,y)=p(x)p(y)p(x,y)=p(x)p(y)。

6. 条件概率:p(X=x|Y=y)p(X=x|Y=y) 是在已知Y=yY=y的条件下,计算X=xX=x的概率。

 

p(x|y)=p(x,y)/p(y)p(x|y)=p(x,y)/p(y)

 

p(x,y)=p(x|y)p(y)=p(y|x)p(x)p(x,y)=p(x|y)p(y)=p(y|x)p(x)

    如果xx和yy相互独立,则:

 

p(x|y)=p(x)p(x|y)=p(x)

7. 全概率公式:

  离散情况下:

 

p(x)=∑yp(x,y)=∑yp(x|y)p(y)p(x)=∑yp(x,y)=∑yp(x|y)p(y)

  连续情况下:

 

p(x)=∫p(x,y)dy=∫p(x|y)p(y)dyp(x)=∫p(x,y)dy=∫p(x|y)p(y)dy

(二). 贝叶斯公式

2.1 贝叶斯公式

基于条件概率公式和全概率公式,我们可以导出贝叶斯公式:

 

P(x,y)=P(x|y)P(y)=P(y|x)P(x)⇒P(x|y)=P(y|x)P(x)P(y)=causal knowledge⋅prior knowledgeprior knowledgeP(x,y)=P(x|y)P(y)=P(y|x)P(x)⇒P(x|y)=P(y|x)P(x)P(y)=causal knowledge⋅prior knowledgeprior knowledge

  • 这里面xx一般是某种状态;yy一般是代表某种观测。
  • 我们称P(y|x)P(y|x)为causal knowledge,意即由xx的已知情况,就可以推算yy发生的概率,例如在图2的例子中,已知如果门开着,则z=0.5mz=0.5m的概率为0.6;如果门关着,则z=0.5mz=0.5m的的概率为0.3。
  • 我们称P(x)P(x)为prior knowledge,是对xx的概率的先验知识。例如在图2的例子中,可设门开或关的概率各占50%50%.
  • P(x|y)P(x|y)是基于观测对状态的诊断或推断。贝叶斯公式的本质就是利用causal knowledge和prior knowledge来进行状态推断或推理。

例1:Dog face

在图2所示的例子中,机器人根据观测的到门的距离,估算门开或关的概率,若测量到门的距离为z=0.5mz=0.5m,则可用条件概率描述门开着的概率:

     

P(open|z=0.6)=?P(open|z=0.6)=?

image

图 2.机器人根据观测计算门开或关的概率

 

P(open|z=0.5)=P(z|open)P(open)P(z)    <−−贝叶斯公式=P(z|open)P(open)P(z|open)p(open)+P(z|¬open)p(¬open)    <−−全概率公式=0.6⋅0.50.6⋅0.5+0.3⋅0.5=2/3P(open|z=0.5)=P(z|open)P(open)P(z)    <−−贝叶斯公式=P(z|open)P(open)P(z|open)p(open)+P(z|¬open)p(¬open)    <−−全概率公式=0.6⋅0.50.6⋅0.5+0.3⋅0.5=2/3

 

2.2 贝叶斯公式的计算

可以看到贝叶斯公式的分母项P(y)P(y),同P(x|y)P(x|y)无关,所以可以把它作为归一化系数看待:

 

P(x|y)=P(y|x)P(x)P(y)=ηP(y|x)P(x)η=P(y)−1=1∑xP(y|x)P(x)P(x|y)=P(y|x)P(x)P(y)=ηP(y|x)P(x)η=P(y)−1=1∑xP(y|x)P(x)

所以基于causal knowledge和prior knowledge进行条件概率计算的过程如下:

Algorithm:

∀x:auxx|y=P(y|x)P(x)η=1∑xauxx|y∀x:P(x|y)=ηauxx|y∀x:auxx|y=P(y|x)P(x)η=1∑xauxx|y∀x:P(x|y)=ηauxx|y

 

2.3 贝叶斯公式中融合多种观测

在很多应用问题中,我们会用多种观测信息对一个状态进行猜测和推理,贝叶斯公式中是如何融合多种观测的呢?

我们简单推导一下:

 

P(x|y,z)=P(x,y,z)P(y,z)=P(y|x,z)p(x,z)P(y,z)=P(y|x,z)p(x|z)p(z)P(y|z)p(z)=P(y|x,z)p(x|z)P(y|z)P(x|y,z)=P(x,y,z)P(y,z)=P(y|x,z)p(x,z)P(y,z)=P(y|x,z)p(x|z)p(z)P(y|z)p(z)=P(y|x,z)p(x|z)P(y|z)

所以有:

 

P(x|y,z)=P(y|x,z)P(x|z)P(y|z)P(x|y,z)=P(y|x,z)P(x|z)P(y|z)

 

2.4 贝叶斯递推公式

由此,我们来推导贝叶斯滤波的递推公式:

P(x|z1,…,zn)=?P(x|z1,…,zn)=?

我们把znzn看做yy,把z1,…,zn−1z1,…,zn−1看做zz,代入上面的公式:

 

P(x|z1,…,zn)=P(zn|x,z1,…,zn–1)P(x|z1,…,zn–1)P(zn|z1,…,zn–1)P(x|z1,…,zn)=P(zn|x,z1,…,zn–1)P(x|z1,…,zn–1)P(zn|z1,…,zn–1)

再由Markov属性,在xx已知的情况下,znzn同{z1,…,zn–1}{z1,…,zn–1}无关,所以:

 

P(x|z1,…,zn)=P(zn|x,z1,…,zn–1)P(x|z1,…,zn–1)P(zn|z1,…,zn–1)=P(zn|x)P(x|z1,…,zn–1)P(zn|z1,…,zn–1)P(x|z1,…,zn)=P(zn|x,z1,…,zn–1)P(x|z1,…,zn–1)P(zn|z1,…,zn–1)=P(zn|x)P(x|z1,…,zn–1)P(zn|z1,…,zn–1)

从而我们得到贝叶斯的递推公式:

 

P(x|z1,…,zn)=P(zn|x)P(x|z1,…,zn−1)P(zn|z1,…,zn−1)=ηnP(zn|x)P(x|z1,…,zn−1)=ηnP(zn|x)ηn−1P(zn−1|x)P(x|z1,…,zn−2)=η1⋯ηn∏i=1...nP(zi|x)P(x)P(x|z1,…,zn)=P(zn|x)P(x|z1,…,zn−1)P(zn|z1,…,zn−1)=ηnP(zn|x)P(x|z1,…,zn−1)=ηnP(zn|x)ηn−1P(zn−1|x)P(x|z1,…,zn−2)=η1⋯ηn∏i=1...nP(zi|x)P(x)

例2:Dog face在例1的基础上,如果机器人第二次测量到门的距离仍然为0.5米, 计算门开着的概率。

P(open|z2,z1)=P(z2|open)P(open|z1)P(z2|open)P(open|z1)+P(z2|¬open)P(¬open|z1)=0.6⋅230.6⋅23+0.3⋅13=0.40.5=0.8P(open|z2,z1)=P(z2|open)P(open|z1)P(z2|open)P(open|z1)+P(z2|¬open)P(¬open|z1)=0.6⋅230.6⋅23+0.3⋅13=0.40.5=0.8

所以,第二次z=0.5m的观测增大了对门开着的概率的置信程度。

 

(三). 如何融入动作?

在实际问题中,对象总是处在一个动态变化的环境中,例如:

  1. 机器人自身的动作影响了环境状态
  2. 其它对象,比如人的动作影响了环境状态
  3. 或者就是简单的环境状态随着时间发生了变化。

如何在Bayes模型中来描述动作的影响呢?

  1. 首先,动作所带来的影响也总是具有不确定性的
  2. 其次,相比于观测,动作一般会使得对象的状态更为模糊(或更不确定)。

 

我们用uu来描述动作,在x′x′状态下,执行了动作uu之后,对象状态改变为xx的概率表述为:

 

P(x|u,x′)P(x|u,x′)

 

动作对状态的影响一般由状态转移模型来描述。如图3所示,表示了“关门”这个动作对状态影响的转移模型。这个状态转移模型表示:关门这个动作有0.1的失败概率,所以当门是open状态时,执行“关门”动作,门有0.9的概率转为closed状态,有0.1的概率保持在open状态。门是closed的状态下,执行“关门”动作,门仍然是关着的。

image

图3. “关门”动作的状态转移模型

 

执行某一动作后,计算动作后的状态概率,需要考虑动作之前的各种状态情况,把所有情况用全概率公式计算:

  • 连续情况下:

 

P(x|u)=∫P(x|u,x′)P(x′)dx′P(x|u)=∫P(x|u,x′)P(x′)dx′

  • 离散情况下:

 

P(x|u)=∑P(x|u,x′)P(x′)P(x|u)=∑P(x|u,x′)P(x′)

例3:Dog face在例2的基础上,如果按照图3所示的状态转移关系,机器人执行了一次关门动作, 计算动作后门开着的概率?

 

P(open|u)=∑P(open|u,x′)P(x′)=P(open|u,open)P(open)+P(open|u,closed)P(closed)=110∗0.8+01∗0.2=0.08P(open|u)=∑P(open|u,x′)P(x′)=P(open|u,open)P(open)+P(open|u,closed)P(closed)=110∗0.8+01∗0.2=0.08

 

P(closed|u)=∑P(closed|u,x′)P(x′)=P(closed|u,open)P(open)+P(closed|u,closed)P(closed)=910∗0.8+11∗0.2=0.92P(closed|u)=∑P(closed|u,x′)P(x′)=P(closed|u,open)P(open)+P(closed|u,closed)P(closed)=910∗0.8+11∗0.2=0.92

所以,执行一次关门动作后,门开着的概率变为了0.08.

 

(四). 贝叶斯滤波算法

4.1 算法设定

由上述推导和示例,我们可以给出贝叶斯滤波的算法,算法的输入输出设定如下。

  1. 系统输入
    1. 1到tt时刻的状态观测和动作:dt={u1,z1…,ut,zt}dt={u1,z1…,ut,zt}
    2. 观测模型:P(z|x)P(z|x)
    3. 动作的状态转移模型:P(x|u,x′)P(x|u,x′)
    4. 系统状态的先验概率分布P(x)P(x).
  2. 期望输出
    1. 计算状态的后延概率,称为状态的置信概率:Bel(xt)=P(xt|u1,z1…,ut,zt)Bel(xt)=P(xt|u1,z1…,ut,zt)

 

4.2 算法基本假设

贝叶斯滤波的基本假设:

        1. Markov性假设: tt时刻的状态由t−1t−1时刻的状态和tt时刻的动作决定。tt时刻的观测仅同tt时刻的状态相关,如图4所示:

image


图4. Markov模型

p(zt|x0:t,z1:t,u1:t)=p(zt|xt)p(zt|x0:t,z1:t,u1:t)=p(zt|xt)
p(xt|x1:t−1,z1:t,u1:t)=p(xt|xt−1,ut)p(xt|x1:t−1,z1:t,u1:t)=p(xt|xt−1,ut)

       2. 静态环境,即对象周边的环境假设是不变的

       3. 观测噪声、模型噪声等是相互独立的

4.3 Bayes滤波算法

基于上述设定和假设,我们给出贝叶斯滤波算法的推导过程:

Bel(xt)=P(xt|u1,z1…,ut,zt)Bel(xt)=P(xt|u1,z1…,ut,zt)

=ηP(zt|xt,u1,z1,…,ut)P(xt|u1,z1,…,ut)      <—Bayes=ηP(zt|xt,u1,z1,…,ut)P(xt|u1,z1,…,ut)      <—Bayes

=ηP(zt|xt)P(xt|u1,z1,…,ut)      <—Markov=ηP(zt|xt)P(xt|u1,z1,…,ut)      <—Markov

=ηP(zt|xt)∫P(xt|u1,z1,…,ut,xt−1)P(xt−1|u1,z1,…,ut)dxt−1) <—TotalProb.=ηP(zt|xt)∫P(xt|u1,z1,…,ut,xt−1)P(xt−1|u1,z1,…,ut)dxt−1) <—TotalProb.

=ηP(zt|xt)∫P(xt|ut,xt−1)P(xt−1|u1,z1,…,ut)dxt−1)<—Markov=ηP(zt|xt)∫P(xt|ut,xt−1)P(xt−1|u1,z1,…,ut)dxt−1)<—Markov

=ηP(zt|xt)∫P(xt|ut,xt−1)P(xt−1|u1,z1,…,zt−1)dxt−1)<—Markov=ηP(zt|xt)∫P(xt|ut,xt−1)P(xt−1|u1,z1,…,zt−1)dxt−1)<—Markov

=ηP(zt|xt)∫P(xt|ut,xt−1)Bel(xt−1)dxt−1=ηP(zt|xt)∫P(xt|ut,xt−1)Bel(xt−1)dxt−1

其中第一步采用贝叶斯公式展开,第二步使用Markov性质(ztzt仅由xtxt决定);第三步使用全概率公式对xt−1xt−1进行展开;第四步继续使用Markov性质(xtxt仅由xt−1xt−1和utut决定);第五步继续使用Markov性质,因为xt−1xt−1同utut无关,最终得到Bel(xt)Bel(xt)的递推公式。

可见递推公式中分为两个步骤,∫P(xt|ut,xt−1)Bel(xt−1)dxt−1∫P(xt|ut,xt−1)Bel(xt−1)dxt−1部分是基于xt−1,utxt−1,ut预测xtxt的状态;ηP(zt|xt)ηP(zt|xt)部分是基于观测ztzt更新状态xtxt.

4.3 Bayes滤波算法流程

所以,Bayes滤波的算法流程图如图5所示。如果dd是观测,则进行一次状态更新,如果dd是动作,则进行一次状态预测。

IKPS48MP]LSAG515A3`L9KB

图5. Bayes滤波的算法流程

我们看到,在进行状态预测时,需要对所有可能的x′x′状态进行遍历,使得基本的Bayes模型在计算上成本是较高的。

4.3 Bayes滤波算法的应用

Bayes滤波方法是很多实用算法的基础,例如:

  • Kalman滤波
  • 扩展Kalman滤波
  • 信息滤波
  • 粒子滤波

等,我们在下一节介绍Kalman滤波。

 

参考文献

[1]. Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilistic Robotics, 2002, The MIT Press.

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
贝叶斯滤波是一种基于贝叶斯定理的概率滤波方法,用于估计系统状态的方法。在Matlab中,可以使用贝叶斯滤波工具箱(Bayesian Filtering Toolbox)来实现贝叶斯滤波贝叶斯滤波工具箱提供了多种贝叶斯滤波算法的实现,包括卡尔曼滤波、粒子滤波、扩展卡尔曼滤波等。这些算法可以用于不同类型的系统状态估计问题,如目标跟踪、传感器融合、机器人定位等。 在Matlab中使用贝叶斯滤波工具箱,首先需要安装该工具箱。安装完成后,可以通过调用相应的函数来实现贝叶斯滤波算法。例如,使用卡尔曼滤波可以调用`kalmanFilter`函数,使用粒子滤波可以调用`particleFilter`函数。 以下是一个简单的贝叶斯滤波示例代码,使用卡尔曼滤波对一个一维系统进行状态估计: ```matlab % 系统模型 A = 1; % 状态转移矩阵 H = 1; % 观测矩阵 Q = 0.1; % 状态噪声方差 R = 1; % 观测噪声方差 % 初始状态 x0 = 0; % 初始状态估计 P0 = 1; % 初始状态协方差 % 生成观测数据 T = 100; % 时间步数 true_states = zeros(T, 1); % 真实状态 observations = zeros(T, 1); % 观测值 for t = 1:T true_states(t) = A * true_states(max(t-1, 1)) + sqrt(Q) * randn; observations(t) = H * true_states(t) + sqrt(R) * randn; end % 使用卡尔曼滤波进行状态估计 filter = kalmanFilter(A, H, Q, R, x0, P0); estimated_states = zeros(T, 1); % 估计状态 for t = 1:T filter = filter.predict(); filter = filter.correct(observations(t)); estimated_states(t) = filter.State; end % 绘制结果 figure; plot(1:T, true_states, 'b-', 'LineWidth', 2); hold on; plot(1:T, observations, 'ro', 'MarkerSize', 5); plot(1:T, estimated_states, 'g--', 'LineWidth', 2); legend('真实状态', '观测值', '估计状态'); xlabel('时间步数'); ylabel('状态值'); ``` 这段代码演示了如何使用贝叶斯滤波工具箱中的`kalmanFilter`函数实现卡尔曼滤波,并对一个一维系统的状态进行估计。你可以根据自己的需求和系统模型进行相应的修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值