一篇文章读懂大模型类型:LLM、TTS、Text-Embedding、Rerank

以下是 大模型类型 LLM、TTS、Text-Embedding、Rerank 的定义、核心理解及应用场景的详细说明,帮助你在实际项目中合理选择和应用。


1. LLM(Large Language Model,大语言模型)

定义
  • LLM 是一种基于海量文本训练的大型神经网络模型,能够理解和生成自然语言文本,完成对话、问答、写作等任务。
  • 典型模型:GPT-4、Llama、PaLM、Claude。
核心理解
  • 输入输出:接收文本输入(Prompt),生成文本输出。
  • 能力范围:文本生成、逻辑推理、代码编写、多语言支持等。
  • 局限性:知识依赖训练数据,可能存在幻觉(生成错误内容)。
应用场景
  • 对话系统:ChatGPT 类聊天机器人。
  • 内容生成:文章写作、营销文案、代码补全。
  • 知识问答:基于文档的问答(结合 RAG 技术)。
  • 工具调用:通过 Function Calling 连接外部 API(如查询天气)。
示例
# 调用 LLM 生成文本(以 OpenAI 为例)
response = openai.chat.completions.create(
    model="gpt-4",
    messages=[{
   "role": "user", "content": "用100字解释量子计算"}]
)
print(response.choices[0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值