以下是 大模型类型 LLM、TTS、Text-Embedding、Rerank 的定义、核心理解及应用场景的详细说明,帮助你在实际项目中合理选择和应用。
1. LLM(Large Language Model,大语言模型)
定义:
- LLM 是一种基于海量文本训练的大型神经网络模型,能够理解和生成自然语言文本,完成对话、问答、写作等任务。
- 典型模型:GPT-4、Llama、PaLM、Claude。
核心理解:
- 输入输出:接收文本输入(Prompt),生成文本输出。
- 能力范围:文本生成、逻辑推理、代码编写、多语言支持等。
- 局限性:知识依赖训练数据,可能存在幻觉(生成错误内容)。
应用场景:
- 对话系统:ChatGPT 类聊天机器人。
- 内容生成:文章写作、营销文案、代码补全。
- 知识问答:基于文档的问答(结合 RAG 技术)。
- 工具调用:通过 Function Calling 连接外部 API(如查询天气)。
示例:
# 调用 LLM 生成文本(以 OpenAI 为例)
response = openai.chat.completions.create(
model="gpt-4",
messages=[{
"role": "user", "content": "用100字解释量子计算"}]
)
print(response.choices[0]