本章学习目标
1.理解朴素贝叶斯模型的模型假设。
2.理解后验概率最大化与期望损失最小化的关系。
3.掌握极大似然估计的求解过程。
4.掌握贝叶斯估计的求解过程。
5.掌握贝叶斯估计的算法实现
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。“特征条件独立”假设是被称为“朴素”的原因。
做法:给定训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入 x x x,利用贝叶斯定理求出后验概率最大的输出 y y y。
首先来说一下两个概念:“先验概率”和“后验概率”
“先验概率”:是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。
“后验概率”:指依据得到"结果"信息所计算出的最有可能是那种事件发生,是“执果寻因”。
基本方法
训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T = \{(x_1,y_1), (x_2,y_2),...,(x_N,y_N)\} T={
(x1,y1),(x2,y2),...,(xN,yN)} 由 X X X与 Y Y Y的联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)独立同分布产生。
朴素贝叶斯法通过训练数据学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)。具体地,学习以下先验概率及条件分布:
先验分布 P ( Y = c k ) , k = 1 , 2 , . . . , K P(Y=c_k), \quad k=1,2,...,K P(Y=ck),k=1,2,...,K
条件概率分布 P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) , k = 1 , 2 , . . . K P(X=x|Y=c_k) = P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=c_k), \quad k=1,2,...K P(X=x∣Y=ck)=P(X(1)=x(1),...,X(n)=x(n)∣Y=ck),k=1,2,...K
于是学习到联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)。
朴素贝叶斯法对条件概率做了条件独立性的假设。于是
朴素贝叶斯法分类时,对给定的输入 x x x,通过学习到的模型计算后验概率分布 P ( Y = c k ∣ X = x ) P(Y=c_k|X=x) P(Y=ck∣X=x),将后验概率最大的类作为 x x x的类输出。后验概率计算根据贝叶斯定理进行,并将条件概率带入:
这就是朴素贝叶斯法分类的基本公式。于是,朴素贝叶斯分类器可表示为
y = f ( x ) = a r g max c k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) ∑ k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) y = f(x) = arg\max\limits_{c_k}\frac{P(Y=c_k) \prod\limits_{j}{P(X^{(j)}=x^{(j)}|Y=c_k})}{\sum\limits_{k}{P(Y=c_k)\prod\limits_{j}{P(X^{(j)}=x^{(j)}|Y=c_k})}} y=f(x)=argckmaxk∑P(Y=ck)j∏P(X(j)=x(j)∣Y=ck)P(Y=ck)j∏P(X(j)=x(j)∣Y=ck)
书上所说,式中分母对所有 c k c_k ck都是相同的,所以有 y = a r g max c k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) y = arg\max\limits_{c_k}P(Y=c_k)\prod\limits_{j}{P(X^{(j)}=x^{(j)}|Y=c_k}) y=argckmaxP(Y=ck)j∏P(X(j)=x(j)∣Y=ck)
根据自己理解,后验概率
所以有贝叶斯分类器
y = f ( x ) = a r g max c k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) P ( X = x ) y = f(x) = arg\max\limits_{c_k}\frac{P(Y=c_k)\prod\limits_{j}{P(X^{(j)}=x^{(j)}|Y=c_k})}{P(X=x)}