YOLOv5改进 | 图像去雾 | 利用图像去雾网络AOD-PONO-Net网络增改进图像物体检测(全网独家首发)

本文介绍了如何利用AODNet-PONO-Net图像去雾网络改进YOLOv5,实现对图像的二次增强,尤其适用于模糊或雾天图像的物体检测。通过端到端训练的AOD-Net模型,直接从雾图像生成清晰图像,提升后续高级视觉任务的性能。详细教程包括核心代码修改和训练过程记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍 

本文给大家带来的改进机制是利用AODNet图像去雾网络结合PONO机制实现二次增强,我将该网络结合YOLOv5针对图像进行去雾检测(也适用于一些模糊场景,图片不清晰的检测)同时本文的内容不影响其它的模块改进可以作为工作量凑近大家的论文里,非常的适用,图像去雾检测为群友最近提出的需要的改进,在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。  

👑欢迎大家订阅我的专栏一起学习YOLO👑 

  专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新  

目录

 一、本文介绍 

二、原理介绍 

三、核心代码

四、添加教程

 4.1 修改一

4.2 修改二 

4.3 修改三 

五、AODNet-PONO-Net的yaml文件和运行记录

5.1 AODNet-PONO-Net的yaml文件

5.2 训练过程截图 

五、本文总结


二、原理介绍 

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转

摘要:这篇论文提出了一种名为全能去雾网络(AOD-Net)的图像去雾模型,该模型是基于重新制定的大气散射模型并利用卷积神经网络(CNN)构建的。与大多数先前的模型不同,AOD-Net不是分别估计传输矩阵和大气光,而是直接通过一个轻量级的CNN生成清晰图像。这种新颖的端到端设计使得将AOD-Net嵌入到其他深度模型中变得简单,例如,用于提升雾霾图像上高级任务性能的Faster R-CNN。在合成和自然雾霾图像数据集上的实验结果证明了我们在峰值信噪比(PSNR)、结构相似性指数(SSIM)和主观视觉质量方面超越了最先进技术的性能。此外,当将AOD-Net与Faster R-CNN结合并从头到尾进行联合训练时,我们见证了雾霾图像上对象检测性能的显著提升。


AOD-Net是一个端到端的可训练去雾模型,直接从有雾图像产生清晰图像,而不是依赖于任何单独和中间参数估计步骤。基于重新公式化的大气散射模型设计,与现有工作共享相同的物理基础,但以一种“更端到端”的方式将其所有参数估计在一个统一模型中完成

主要创新点

  1. 端到端去雾模型:首次提出一个端到端训练的去雾模型,直接从雾图像生成清晰图像,避免了传统方法中估计传输矩阵和大气光的独立步骤​​。
  2. 与高级视觉任务的结合:首次量化研究去雾质量如何影响后续高级视觉任务的性能,为比较去雾结果提供了一种新的客观标准。此外,AOD-Net可以无缝地与其他深度模型嵌入,形成一个在有雾图像上执行高级任务的流水线,通过端到端的联合调优进一步提升性能​​。
  3. <
<think>好的,我需要处理用户关于AOD-Net的问题。首先,用户想了解AOD-Net的相关资料、教程和下载资源。根据提供的引用内容,用户提到了YOLOv10的改进和基于PyTorch的AOD-Net模型构建。我需要结合这些信息来组织回答。 首先,我应该介绍AOD-Net的基本概念,包括它的用途,比如图像。然后,根据引用[1],提到AOD-PONO-NetYOLOv10的改进,用于物体检测。需要说明AOD-Net的核心思想,比如端到端模型和大气散射模型的简化,以及轻量化结构。 接下来,关于资料和教程,引用[2]提到了基于PyTorch的模型构建,可以推荐用户查阅PyTorch官方文档和相关论文。同时,GitHub上的开源项目可能有用,比如AODNet-PONO-Net的YAML文件,如引用[1]提到的。 下载资源方面,需要提到PyTorch或TensorFlow的模型库,以及论文中提供的官方代码。此外,用户可能对实际应用感兴趣,比如如何将AOD-Net集成到YOLOv10中,提升检测效果,这部分可以引用[1]的内容。 然后,生成相关问题需要考虑用户可能的后续疑问,比如AOD-Net的原理、与其他方法的对比、训练数据集、集成到检测模型的方法,以及实际应用场景。这些问题需要自然衔接,帮助用户深入理解。 最后,确保回答符合格式要求,正确使用LaTeX,行内公式用$...$,独立公式用$$...$$,并且结构清晰。同时,引用标识要正确添加,例如在提到YOLOv10改进时添加[^1],在模型构建部分添加[^2]。 检查是否有遗漏的信息,比如模型的具体结构或训练细节,但根据现有引用,可能没有更多细节,所以保持回答基于现有资料。确保语言简洁,分点明确,便于用户理解。</think>### AOD-Net 深度学习模型解析 AOD-Net(All-in-One Dehazing Network)是一种用于图像的端到端深度学习模型,通过简化传统大气散射模型$t(x)I(x) = J(x)t(x) + A(1 - t(x))$,直接学习清晰图像图之间的映射关系[^1]。其核心创新在于将透射率$t(x)$和大气光$A$合并为单一参数$K(x)$,并通过轻量级网络结构实现高效。 #### 关键资源与教程 1. **论文与理论** - 原始论文《AOD-Net: All-in-One Dehazing Network》是必读资料。 - 模型代码通常以PyTorch或TensorFlow实现,如引用[2]中提到的PyTorch版本。 2. **代码实现与下载** - **GitHub项目**:搜索关键词`AODNet-PONO-Net`可找到集成改进版代码(含YAML配置文件)。 - **预训练模型**:部分仓库提供`.pth`或`.tflite`格式的模型文件,如引用[2]生成的PyTorch模型。 3. **实践步骤示例(PyTorch)** ```python import torch class AODNet(torch.nn.Module): def __init__(self): super(AODNet, self).__init__() self.conv1 = torch.nn.Conv2d(3, 3, kernel_size=1) def forward(self, x): return self.conv1(x) # 训练代码参考引用[2]的模型保存逻辑 ``` #### 应用场景 - **目标检测强**:如YOLOv10通过AOD-PONO-Net提升检测精度。 - **自动驾驶**:改善低能见度环境下的视觉感知。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值