id="cproIframe_u1728839_3" height="240" marginheight="0" src="http://pos.baidu.com/acom?adn=4&at=160&aurl=&cad=1&ccd=32&cec=gb2312&cfv=18&ch=0&col=zh-cn&conOP=0&cpa=1&dai=3&dis=0&layout_filter=rank%2Cimage<r=http%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3DhncttQQrM1KZkOvSU3wrwB6ZTVWAN-Q2p4qm0a-zItGvGdnZHsykwphIzGPMjzaSfyC-dJ5Vpyrd79L_5xc1Wa%26wd%3D%26eqid%3D89a091f90000f5640000000455c5822d<u=http%3A%2F%2Fwww.aboutyun.com%2Fthread-11909-1-1.html&lunum=6&n=92051019_cpr&pcs=995x544&pis=10000x10000&ps=621x954&psr=1920x1080&pss=1010x1000&qn=ac840e71de40c278&rad=&rsi0=120&rsi1=240&rsi5=4&rss0=%23FFFFFF&rss1=%23FFFFFF&rss2=%230000ff&rss3=%23444444&rss4=%23008000&rss5=&rss6=%23e10900&rss7=&scale=&skin=tabcloud_skin_3&stid=5&td_id=1728839&tn=text_default_120_240&tpr=1439007317156&ts=1&version=2.0&xuanting=0&dtm=BAIDU_DUP2_SETJSONADSLOT&dc=2&di=u1728839&ti=HBase%2BZooKeeper%2BHadoop2.6.0%E7%9A%84ResourceManager%20HA%E9%9B%86%E7%BE%A4%E9%AB%98%E5%8F%AF%E7%94%A8%E9%85%8D%E7%BD%AE-%E5%A4%A7%E6%95%B0%E6%8D%AE%EF%BC%88ha&tt=1439007316984.1500.1547.1547" frameborder="0" width="120" allowtransparency="" marginwidth="0" scrolling="no" align="center,center">
问题导读: 0、了解常规JDK安装以及Linux系统配置 1、了解集群规划以及集群场景 2、熟悉HBase的集群搭建 3、熟悉ZooKeeper集群搭建 4、熟悉Hadoop2.6.0版本HA集群搭建 5、验证HBase、ZooKeeper、Hadoop等集群运行情况 参考 :Hadoop2.4的ResourceManager HA高可用配置 hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFS HA、YARN等。最新的hadoop-2.6.0又增加了YARN HA 注意:apache提供的hadoop-2.6.0的安装包是在32位操作系统编译的,因为hadoop依赖一些C++的本地库, 所以如果在64位的操作上安装hadoop-2.6.0就需要重新在64操作系统上重新编译 (64位系统hadoop2.6.0编译前准备工作,请参考:Hadoop-2.6.0在Centos6.5 64位系统编译前准备工作 ) 1.修改Linux主机名 2.修改IP 3.修改主机名和IP的映射关系 ######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等) /etc/hosts里面要配置的是内网IP地址和主机名的映射关系 4.关闭防火墙 5.ssh免登陆 6.安装JDK,配置环境变量等 集群规划: 主机名 IP 安装的软件 运行的进程
- Master 192.168.1.201 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
- Slave1 192.168.1.202 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
- Slave2 192.168.1.203 jdk、hadoop ResourceManager
- Slave3 192.168.1.204 jdk、hadoop ResourceManager
- Slave4 192.168.1.205 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
- Slave5 192.168.1.206 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
- Slave6 192.168.1.207 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
复制代码
说明: 1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。 hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode 这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态 2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调 安装步骤: 1.安装配置zooekeeper集群(在Slave4上) 1.1解压
- [root@Master local]#tar -zxvf zookeeper-3.4.6.tar.g-C /usr/local/
- [root@Master local]#mv zookeeper-3.4.6/ zookeeper
复制代码
1.2修改配置
- [root@Master local]#cd /usr/local/zookeeper/conf/
- [root@Master local]#cp zoo_sample.cfg zoo.cfg
- [root@Master local]#vim zoo.cfg
复制代码
修改:
- dataDir=/itcast/zookeeper/zkData
复制代码
在最后添加:
- server.1=Slave4:2888:3888
- server.2=Slave5:2888:3888
- server.3=Slave6:2888:3888
复制代码
保存退出 然后创建一个tmp文件夹
- [root@Master local]#mkdir /usr/local/zookeeper/zkData
复制代码
再创建一个空文件
- [root@Master local]#touch /usr/local/zookeeper/zkData/myid
复制代码
最后向该文件写入ID
- [root@Master local]#echo 1 > /usr/local/zookeeper/zkData/myid
复制代码
1.3将配置好的zookeeper拷贝到其他节点(首先分别在Slave5、Slave6根目录:/usr/local/)
- [root@Master local]#scp -r /usr/local/zookeeper/ Slave5:/usr/local/
- [root@Master local]#scp -r /usr/local/zookeeper/ Slave6:/usr/local/
复制代码
注意:修改Slave5、Slave6对应/usr/local/zookeeper/zkData/myid内容
- Slave5:
- [root@Master local]#echo 2 > /usr/local/zookeeper/zkData/myid
- Slave6:
- [root@Master local]#echo 3 > /usr/local/zookeeper/zkData/myid
复制代码
2.安装配置hadoop集群(在Master上操作) 2.1解压
- [root@Master local]#tar -zxvf hadoop-2.6.0.tar.gz -C /usr/local/
复制代码
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下) #将hadoop添加到环境变量中
- [root@Master local]#vim /etc/profile
- export JAVA_HOME=/usr/local/jdk1.7
- export HADOOP_HOME=/usr/local/hadoop-2.6.0
- export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
复制代码
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下
- [root@Master local]#cd /usr/local/hadoop-2.6.0/etc/hadoop
复制代码
2.2.1修改hadoo-env.sh
- export JAVA_HOME=/usr/local/jdk1.7
复制代码
2.2.2修改core-site.xml
- <configuration>
- <!-- 指定hdfs的nameservice为masters -->
- <property>
- <name>fs.defaultFS</name>
- <value>hdfs://masters</value>
- </property>
- <!-- 指定hadoop临时目录 -->
- <property>
- <name>hadoop.tmp.dir</name>
- <value>/usr/local/hadoop-2.6.0/tmp</value>
- </property>
- <!-- 指定zookeeper地址 -->
- <property>
- <name>ha.zookeeper.quorum</name>
- <value>Slave4:2181,Slave5:2181,Slave6:2181</value>
- </property>
- </configuration>
复制代码
2.2.3修改hdfs-site.xml
- <configuration>
- <!--指定hdfs的nameservice为masters,需要和core-site.xml中的保持一致 -->
- <property>
- <name>dfs.nameservices</name>
- <value>masters,ns1,ns2,ns3</value>
- </property>
- <!-- Master下面有两个NameNode,分别是Master,Slave1 -->
- <property>
- <name>dfs.ha.namenodes.masters</name>
- <value>Master,Slave1</value>
- </property>
- <!-- Master的RPC通信地址 -->
- <property>
- <name>dfs.namenode.rpc-address.masters.Master</name>
- <value>Master:9000</value>
- </property>
- <!-- Master的http通信地址 -->
- <property>
- <name>dfs.namenode.http-address.masters.Master</name>
- <value>Master:50070</value>
- </property>
- <!-- Slave1的RPC通信地址 -->
- <property>
- <name>dfs.namenode.rpc-address.masters.Slave1</name>
- <value>Slave1:9000</value>
- </property>
- <!-- Slave1的http通信地址 -->
- <property>
- <name>dfs.namenode.http-address.masters.Slave1</name>
- <value>Slave1:50070</value>
- </property>
- <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
- <property>
- <name>dfs.namenode.shared.edits.dir</name>
- <value>qjournal://Slave4:8485;Slave5:8485;Slave6:8485/masters</value>
- </property>
- <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
- <property>
- <name>dfs.journalnode.edits.dir</name>
- <value>/usr/local/hadoop-2.6.0/journal</value>
- </property>
- <!-- 开启NameNode失败自动切换 -->
- <property>
- <name>dfs.ha.automatic-failover.enabled</name>
- <value>true</value>
- </property>
- <!-- 配置失败自动切换实现方式 -->
- <property>
- <name>dfs.client.failover.proxy.provider.masters</name>
- <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
- </property>
- <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
- <property>
- <name>dfs.ha.fencing.methods</name>
- <value>
- sshfence
- shell(/bin/true)
- </value>
- </property>
- <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
- <property>
- <name>dfs.ha.fencing.ssh.private-key-files</name>
- <value>/root/.ssh/id_rsa</value>
- </property>
- <!-- 配置sshfence隔离机制超时时间 -->
- <property>
- <name>dfs.ha.fencing.ssh.connect-timeout</name>
- <value>30000</value>
- </property>
- </configuration>
复制代码
2.2.4修改mapred-site.xml
- <configuration>
- <!-- 指定mr框架为yarn方式 -->
- <property>
- <name>mapreduce.framework.name</name>
- <value>yarn</value>
- </property>
- </configuration>
复制代码
2.2.5修改yarn-site.xml
- <configuration>
- <!-- 开启RM高可靠 -->
- <property>
- <name>yarn.resourcemanager.ha.enabled</name>
- <value>true</value>
- </property>
- <!-- 指定RM的cluster id -->
- <property>
- <name>yarn.resourcemanager.cluster-id</name>
- <value>RM_HA_ID</value>
- </property>
- <!-- 指定RM的名字 -->
- <property>
- <name>yarn.resourcemanager.ha.rm-ids</name>
- <value>rm1,rm2</value>
- </property>
- <!-- 分别指定RM的地址 -->
- <property>
- <name>yarn.resourcemanager.hostname.rm1</name>
- <value>Slave2</value>
- </property>
- <property>
- <name>yarn.resourcemanager.hostname.rm2</name>
- <value>Slave3</value>
- </property>
- <property>
- <name>yarn.resourcemanager.recovery.enabled</name>
- <value>true</value>
- </property>
-
- <property>
- <name>yarn.resourcemanager.store.class</name>
- <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
- </property>
- <!-- 指定zk集群地址 -->
- <property>
- <name>yarn.resourcemanager.zk-address</name>
- <value>Slave4:2181,Slave5:2181,Slave6:2181</value>
- </property>
- <property>
- <name>yarn.nodemanager.aux-services</name>
- <value>mapreduce_shuffle</value>
- </property>
- </configuration>
复制代码
2.2.6修改slaves(slaves是指定子节点的位置,因为要在Master上启动HDFS、在Slave2启动yarn,所以Master上的slaves文件指定的是datanode的位置,slave2上的slaves文件指定的是nodemanager的位置)
2.2.7配置免密码登陆 #首先要配置Master到Slave1、Slave2、Slave3、Slave4、Slave5、Slave6的免密码登陆 #在Master上生产一对钥匙
- [root@Master local]#ssh-keygen -t rsa
复制代码
#将公钥拷贝到其他节点,包括自己
- [root@Master local]#ssh-copy-id Master
- [root@Master local]#ssh-copy-id Slave1
- [root@Master local]#ssh-copy-id Slave2
- [root@Master local]#ssh-copy-id Slave3
- [root@Master local]#ssh-copy-id Slave4
- [root@Master local]#ssh-copy-id Slave5
- [root@Master local]#ssh-copy-id Slave6
复制代码
#配置Slave2到Slave3、Slave4、Slave5、Slave6的免密码登陆 #在Slave2上生产一对钥匙
- [root@Master local]#ssh-keygen -t rsa
复制代码
#将公钥拷贝到其他节点
- [root@Master local]#ssh-copy-id Slave3
- [root@Master local]#ssh-copy-id Slave4
- [root@Master local]#ssh-copy-id Slave5
- [root@Master local]#ssh-copy-id Slave6
复制代码
#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置Slave1到Master的免登陆 在Slave1上生产一对钥匙
- [root@Master local]#ssh-keygen -t rsa
- [root@Master local]#ssh-copy-id -i Master
复制代码
#在Slave3上生产一对钥匙
- [root@Master local]#ssh-keygen -t rsa
复制代码
#将公钥拷贝到其他节点
- [root@Master local]#ssh-copy-id Slave4
- [root@Master local]#ssh-copy-id Slave5
- [root@Master local]#ssh-copy-id Slave6
复制代码
2.4将配置好的hadoop拷贝到其他节点
- [root@Master local]#scp -r /usr/local/hadoop-2.6.0/ Slave1:/usr/local/
- [root@Master local]#scp -r /usr/local/hadoop-2.6.0/ Slave2:/usr/local/
- [root@Master local]#scp -r /usr/local/hadoop-2.6.0/ Slave3:/usr/local/
- [root@Master local]#scp -r /usr/local/hadoop-2.6.0/ Slave4:/usr/local/
- [root@Master local]#scp -r /usr/local/hadoop-2.6.0/ Slave5:/usr/local/
- [root@Master local]#scp -r /usr/local/hadoop-2.6.0/ Slave6:/usr/local/
复制代码
###注意:严格按照下面的步骤 2.5启动zookeeper集群(分别在Slave4、Slave5、Slave6上启动zk)
- [root@Master local]#cd /usr/local/zookeeper/bin/
- [root@Master local]#./zkServer.sh start
复制代码
#查看状态:一个leader,两个follower
- [root@Master local]#./zkServer.sh status
复制代码
2.6启动journalnode(分别在Slave4、Slave5、Slave6上执行)
- [root@Master local]#cd /usr/local/hadoop-2.6.0/sbin
- [root@Master local]#sbin/hadoop-daemon.sh start journalnode
复制代码
#运行jps命令检验,Slave4、Slave5、Slave6上多了JournalNode进程 2.7格式化HDFS #在Master上执行命令:
- [root@Master local]#hdfs namenode -format
复制代码
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/usr/local/hadoop-2.6.0/tmp, 然后将/usr/local/hadoop-2.6.0/tmp拷贝到Slave1的/usr/local/hadoop-2.6.0/下。
- [root@Master local]#scp -r tmp/ Slave1:/usr/local/hadoop-2.6.0/
复制代码
2.8格式化ZK(在Master上执行即可)
- [root@Master local]#hdfs zkfc -formatZK
复制代码
2.9启动HDFS(在Master上执行)
- [root@Master local]#sbin/start-dfs.sh
复制代码
2.10启动YARN(#####注意#####:是在Slave2上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
- [root@Master local]#Slave2:${HADOOP_HOME}/sbin/start-yarn.sh
- [root@Master local]#Slave3:${HADOOP_HOME}/sbin/yarn-daemon.sh start resourcemanager
复制代码
到此,hadoop-2.6.0配置完毕,可以统计浏览器访问:
- http://192.168.80.100:50070
- NameNode 'Master:9000' (active)
- http://192.168.80.101:50070
- NameNode 'Slave1:9000' (standby)
复制代码
验证HDFS HA 首先向hdfs上传一个文件
- [root@Master local]#hadoop fs -put /etc/profile /profile
- [root@Master local]#hadoop fs -ls /
复制代码
然后再kill掉active的NameNode
- [root@Master local]#kill -9 <pid of NN>
复制代码
通过浏览器访问:http://192.168.80.101:50070 NameNode 'Slave1:9000' (active) 这个时候Slave1上的NameNode变成了active 在执行命令:
- [root@Master local]#hadoop fs -ls /
- -rw-r--r-- 3 root supergroup 1926 2014-02-06 15:36 /profile
复制代码
刚才上传的文件依然存在!!! 手动启动那个挂掉的NameNode
- [root@Master local]#sbin/hadoop-daemon.sh start namenode
复制代码
通过浏览器访问:http://192.168.80.101:50070
- NameNode 'Master:9000' (standby)
复制代码
验证YARN: 运行一下hadoop提供的demo中的WordCount程序:
- [root@Master local]#hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out
复制代码
hadoop HA集群搭建完成 hbase-0.98.9-hadoop2 搭建 4.1 解压缩,并重命名
- [root@Master local]#mv hbase-** hbase
复制代码
修改环境变量:
- export HBASE_HOME=/usr/local/hbase
- export PATH= .:$PATH:$HBASE_HOME/bin:
复制代码
保存,退出。 执行 source /etc/profile 生效 4.1 修改HBase的配置文件#HBASE_HOME/conf/hbase-env.sh 修改内容如下:
- export JAVA_HOME=usr/local/jdk/
- export HBASE_MANAGES_ZK=true //HBase是否管理它自己的ZooKeeper的实例。
复制代码
保存,退出。 4.2 修改HBase的配置文件#HBASE_HOME/conf/hbase-site.xml,修改内容如下:
- <property>
- <name>hbase.rootdir</name>
- <value>hdfs://Master:9000/hbase</value>
- </property>
- <property>
- <name>hbase.cluster.distributed</name>
- <value>true</value>
- </property>
- <property>
- <name>hbase.zookeeper.quorum</name>
- <value>Master</value>
- </property>
- <property>
- <name>dfs.replication</name>
- <value>3</value>
- </property>
复制代码
注意:$HBASE_HOME/conf/hbase-site.xml的hbase.rootdir的主机和端口号与$HADOOP_HOME/conf/core-site.xml的fs.default.name的主机和端口号一致 4.3 (可选)文件 regionservers 的内容修改为Master. 4.4 执行目录到../bin ,执行命令 start-hbase.sh ******启动hbase之前,确保hadoop是运行正常的。并且可以写入文件。 4.5 验证:(1)执行jps,发现新增加了3个Havana进程,分别是HMaster、HRegionServer、HQuorumPeer (HQuorumPeerMain 是ZooKeeper的进程 ) 备注:启动HBase时,请先执行 /usr/local/zookeeper/bin zkServer.sh stop 停止ZooKeeper的进程,以免hbase启动失败。 (2)通过浏览器查看: http://masters:60010 5.HBase的集群安装(在原来的Master上的hbase伪分布基础上搭建): 5.1 集群结构,主节点(hmaster)是Master,从节点(region server)是Slave1,Slave2,Slave3. 5.2 修改hadoop0上的hbase的几个文件 (1)修改hbase-env.sh 最后一行 export HBASE_MANAGES_ZK=false. (2)修改hbase-site.xml文件的hbase.zookeeper.quorum的值为Master,Slave1,Slave2,Slave3 。 (3)修改regionservers文件(存放的 region server的hostname),内容修改成Slave1,Slave2,Slave3 。 5.3 复制Master中的hbase到Slave1,Slave2,Slave3的对应目录下,并复制、Master 的/etc/profile文件到hadoop1 、hadoop2 中。
- [root@Master local]#scp -r hbase Slave1:/usr/local/
- [root@Master local]#scp -r /etc/profile Slave1:/etc/profile
- [root@Master local]#source /etc/profile
复制代码
5.4 在HA集群中,首先各个节点启动ZooKeeper集群,其次 Master中启动hadoop集群,最后在Master上启动hbase集群。 6.测试Hbase是否启动正常: 1) 在Master主机中执行jps,查看进程。会新增一个 HMaster 进程 2) 在regionserver 中执行 jps,新增 HRegionServer。 7.执行hbase脚本命令:
- [root@Slave2 local]# hbase shell
复制代码
|