
pytorch
javastart
专注于大数据 AI
展开
-
windows下安装PyTorch框架支持CPU和GPU两种安装方式
在我之前的项目中用到PyTorch的场景并不多,所以自己对于这个深度学习框架的熟练度也不行,最近因为频繁需要用着PyTorch框架来做调试,需要自己安装搭建这个框架,之前只是用来做推理的,所以直接装的CPU,后面又搞来了GPU的环境这个也需要基于GPU来搭建PyTorch框架,这里主要来总结一下安装方法。因为之前使用tensorflow和keras的时候直接库名称加版本号就可以了,但是pytorch这个稍微麻烦一点,所以想着专门汇总总结记录一下。针对不同的CUDA会有不同的安装命令。转载 2023-02-11 21:03:49 · 209 阅读 · 0 评论 -
Torch.cuda.empty_cache() 性能非常非常慢
当我在单个 GPU 上执行时,我遇到了的问题。这种缓慢的行为出现在被处理之后 - 也就是 GPU 已经快满了,需要回收它的内存来接受下一批的时候。在GPU 状态 - 性能(如预期)。我希望下面的代码 sn-p 和输出都能简明扼要地说明问题。(为了简洁,我已经从 sn-p 中删除了打印和时间测量)输出我是否遗漏了一些明显的东西,或者这是GPU 行为?我在进行复杂编码之前发布这个问题,在我的服务器上可用的几个 GPU 和 CPU 之间进行处理。提前致谢, 阿尔伯特。转载 2022-12-31 21:43:53 · 321 阅读 · 0 评论 -
PyTorch自定义CUDA算子教程与运行时间分
可以看出,因为第一次开始计时前没有同步线程,所以在GPU warm up调用api完毕后,第一次cuda kernel调用就开始了。注意它是异步的,调用完之后控制权立刻返回给CPU,所以之后计算时间的时候要格外小心,很容易只统计到调用的时间。可以看出,每执行一次(一个框)都经过了三个步骤:先是调用api(左上角蓝色框),然后执行kernel(下方蓝色框),最后线程同步(右上角黄色框)。接下来的代码就随心所欲了,这里简单写了一个测量运行时间,对比和torch速度的代码,这部分留着下一章节讲解。转载 2022-12-30 22:05:10 · 146 阅读 · 0 评论