prompt
文章平均质量分 86
javastart
专注于大数据 AI
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
DifyMCP保姆级教程来了!
在 v1.0.0 之前,Dify 平台面临一个关键挑战:模型和工具与主平台高度耦合,新增功能需要修改主仓库代码,限制了开发效率和创新。为此,Dify团队重构了 Dify 底层架构,引入了全新的插件机制,带来了以下四大优势:组件插件化:插件与主平台解耦,模型和工具以插件形式独立运行,支持单独更新与升级。新模型的适配不再依赖于 Dify 平台的整体版本升级,用户只需单独更新相关插件,无需担心系统维护和兼容性问题。新工具的开发和分享将更加高效,支持接入各类成熟的软件解决方案和工具创新。原创 2025-08-13 15:13:19 · 853 阅读 · 0 评论 -
图解 Claude Code 子智能体 Sub-agent
Sub-agent 就像是IDE(集成开发环境) 中的一个专业的团队成员。拥有特定的目标使用独立的上下文窗口可以被限定使用特定的工具遵循自定义的系统提示词它能独立工作并返回专注的结果。打开 sub-agent 的用户界面 (UI):/agents创建一个新的智能体并选择其作用范围定义您的智能体保存以备后用演示如下:现在,让我们构建一个 sub-agent 团队,看看它们的实际应用。代码审查员调试器数据科学家网络研究员接下来,我们将逐一详细介绍每一个智能体。原创 2025-08-06 23:22:16 · 1568 阅读 · 0 评论 -
智能体协作的“记忆”秘诀:Manus团队的上下文工程实战经验分享!
这种从“个体记忆”到“集体记忆”的转变,意味着需要设计更复杂的架构,例如统一的共享内存或通用知识库,以及更精妙的协作机制。在AI智能体光鲜的能力背后,也隐藏着一个核心且常常被忽视的挑战:智能体的“记忆”问题,即我们常说的“上下文管理”。上下文工程的目标是为AI智能体搭建一个“舞台”,确保它在执行任务前,已经拥有了所有必要的“道具”和“剧本”,使其能够随着时间的推移进行适应并保持连贯性。它能防止上下文漂移和核心事实的误解,确保智能体始终“记得”用户的核心需求,例如“记住,用户的衬衫尺码是L码”。原创 2025-08-06 14:24:44 · 1052 阅读 · 0 评论 -
8 种即梦 3.0 视频模型的特殊运镜方式,手把手教你制作高级感拉满的视频 || 喂饭级教程!
回想以前,我们追《阿凡达》或者《黑客帝国》时,总觉得那些炫酷镜头是大导演的专利——得搭绿幕、请摄影师、花大价钱造特效,普通人想都别想。常用于展示动作的瞬间状态,如《黑客帝国》中的子弹时间,增强戏剧性和视觉冲击。快速将镜头从一个方向甩向另一个方向,中间画面模糊,实现快速切换场景或视角。用于拍摄水下世界、潜水场景或科幻中的水下环境,营造神秘、梦幻或紧张的氛围。用于快速切换场景或视角,常用于动作片中的快速转场或表现角色的快速反应。屏幕分成两部分,一边镜头平移,另一边镜头推拉,同时展示两个场景或视角。原创 2025-08-03 07:16:19 · 1581 阅读 · 0 评论 -
运镜提示词分享!即梦AI视频3.0运镜黑科技!小白也能做出百万播放的运镜神作(附详细运镜手法提示词)
最近的越来越火了。各类创意层出不穷,百花齐放。目前有很多也是火热。做这种剧情类的视频,就会大量用到了。有一点我很认同,就是要想AI视频做得好,对,这里不是指真实拍摄中的运镜,而是指做AI图生视频,根据提示词来运镜。今天兜兜就来跟大家分享几组实用的AI视频运镜技巧~原创 2025-08-03 06:56:10 · 2756 阅读 · 0 评论 -
教师必备!DeepSeek+Word智能组卷技巧大公开
如果在窗口菜单中没有找到开发工具选项,请选择“开始”,进入word初始界面。新建一个对话,将生成的试题文档上传至DeepSeek平台,指令如下:指令Vba宏,一键适配,word纸张横向,A3大小。· 人工优化:输出内容完成后,仔细审核试题难度,适当调整阅读材料篇幅,完善细节内容。文档准备:创建新的Word/pdf文档,输入本学期相关知识点的内容梳理,并给出具体知识点及重难点掌握要求。在开发工具中选择“Visual Basic”,在空白处右键单击,选择“插入——模块”,粘贴刚刚deepseek生成的宏代码。原创 2025-06-19 18:27:39 · 1061 阅读 · 0 评论 -
听说可以用ChatGPT写答辩意见了?GPT模型在律师法律文书写作领域的助益与不足
原文:https://zhuanlan.zhihu.com/p/651345473今年以来,以ChatGPT为代表的新型人工智能语言模型(统称为“GPT模型”)风靡全球,对各行业均产生了不同程度的冲击。就律师行业而言,主要针对以GPT模型能否取代律师工作,在何种程度上能够为律师工作提供协助,可能存在及产生的法律风险等方面,实务界展开了热烈的讨论。本文以笔者所在团队实际代理的某侵权责任案为切入点,尝试展示GPT模型分析该案的视角、层次及逻辑,并通过与法院判决部分的对比,揭示GPT模型在案情分析及文原创 2024-07-27 22:41:58 · 1211 阅读 · 0 评论 -
法律 | 法律人AI使用指南
原文:法律 | 法律人AI使用指南|法官|法院|文书|公司法_网易订阅01引言过去半年多,我一直在尝试着用AI来辅助自己的各项法律工作,将AI融入自己的日常工作之中,并试图形成自身稳定的“法律+AI”工作流。在此过程中,我时常惊讶于AI高效的工作能力,也不时会感到失望——他有他的长处,也有他的局限——逐渐地,我学会了扬长避短,也算积累了一些经验与教训,所以这篇文章既是分享,也是对过去自身工作经验的梳理与总结。我有一个比喻:在AI时代,对于法律工作而言,AI擅长的不是从0到1,而是从1到90原创 2024-07-27 17:05:21 · 3527 阅读 · 0 评论 -
一种基于LLM的辅助教学方法与流程
这些功能通过与教学辅助模型的交互实现,包括发送指令、输入学生的学习需求和学科知识点、输入学生的学习进度和水平等。13、信息补充,用户向教学辅助平台发送需求指令,教学辅助平台通过prompt交互向教学辅助模型补充更具体的信息,包括针对原信息点进行二次展开,或者结合所有补充的信息,重新生成全面教学辅助信息。36、信息补充,用户向教学辅助平台发送需求指令,教学辅助平台通过prompt交互向教学辅助模型补充更具体的信息,包括针对原信息点进行二次展开,或者结合所有补充的信息,重新生成全面教学辅助信息。原创 2024-04-28 19:00:46 · 1261 阅读 · 0 评论 -
探索LLM大模型在教育领域的应用前景
其中,$\mathbf{h}w$ 表示单词的向量表示,$\mathbf{E}$ 表示词嵌入矩阵,$\mathbf{x}w$ 表示单词的一热编码向量,$\mathbf{b}_w$ 表示单词的偏置向量。其中,$\mathbf{Q}$ 表示查询矩阵,$\mathbf{K}$ 表示关键字矩阵,$\mathbf{V}$ 表示值矩阵,$d_k$ 表示关键字向量的维度。其中,$\text{head}_i$ 表示单个自注意力层的计算结果,$h$ 表示多头注意力的数量,$\mathbf{W}^O$ 表示输出权重矩阵。原创 2024-04-28 18:56:03 · 2340 阅读 · 0 评论 -
【ChatGPT】AI评论家,适合点评论文和文章的Prompt模
使用方法:复制下述提示词到ChatGPT,然后把需要评价的文本复制到文末。编辑于 2023-07-29 02:36・IP 属地上海。4. 小编审稿(可以早下班了!2. 老师给学生的作文打分。3. 业余评论家点评文章。1. 家长辅导孩子写作。原创 2024-04-28 17:04:46 · 2605 阅读 · 0 评论 -
CHATGPT对写作业的好处
本文目录一览1、chatGPT对写作业的好处2、chatGPT批改作业3、chatGPT完成作业4、chatGPT写作业水平超过大学生5、美国大学生用chatGPT写作业大家好,今天来为您分享chatGPT对写作业的好处的一些知识,本文内容可能较长,请你耐心阅读,如果能碰巧解决您的问题,别忘了关注本站,您的支持是对我们的最大鼓励!其实这么做的目的也是投喂chatGPT,让它围绕你的主题,学习不同的知识,例如高引文献、综述文献、按时间或按某些主题的文献、指定某些期刊的文献等等。原创 2024-04-28 10:32:37 · 2129 阅读 · 0 评论 -
人工智能技术在教育中的潜力有多大
原文:人工智能技术在教育中的潜力有多大作者:大全Prompt链接:https://www.zhihu.com/question/637034129/answer/3346272227来源:知乎谢邀:在技术快速发展的今天,人工智能(AI)技术在教育领域的应用正成为一个热门话题。AI技术在教育中的潜力是巨大的,它不仅能够改变教学方式,还能提升学习效率,实现个性化教育。原创 2024-04-28 07:54:14 · 3281 阅读 · 0 评论 -
每天不知道吃什么?食谱生成AI工具,帮你实现食谱自由
每天吃什么或许是世纪难题,要想吃的美味、吃的营养更是难上加难面对繁琐的食材怎么做才能省心省力更美味呢?不妨问问AI看能不能辅助我们做出别样美味。今天和大家分享几个食谱生成AI工具,帮你实现食谱自由,轻松编辑拿手菜,我的食谱我做主。原创 2024-04-25 17:46:24 · 2187 阅读 · 0 评论 -
大模型推理优化之 KV Cache
KV Cache,即键-值缓存,是一种用于存储键值对数据的缓存机制。在语言模型的推理过程中,经常需要多次访问相同的数据,而KV Cache通过将这些数据缓存到内存中,提供了快速的数据访问速度,从而加速推理过程。该技术仅应用于解码阶段。如 decode only 模型(如 GPT3、Llama 等)、encode-decode 模型(如 T5)的 decode 阶段,像 Bert 等非生成式模型并不适用。原创 2024-04-25 09:32:20 · 5418 阅读 · 0 评论 -
Colab使用教程(超级详细版)及Colab Pro/Pro+评测
Pro+增加到了3个高RAM会话和3个标准会话,在Pro基础上又翻了2.5倍,相当于免费版算力的9倍,Pro+的52GB的高RAM和Pro的25GB的高RAM相比也略有提升(10分钟的epoch能快2分钟左右)。在打开笔记本后,我们默认的文件路径是"/content",这个路径也是执行笔记本时的路径,同时我们一般把用到的各种文件也保存在这个路径下。如果在有代码块执行的情况下继续点击其他代码块的“播放”按钮,则这些代码块进入“等待执行”的状态,按钮也就会进入转圈的状态,但外部的圆圈是虚线。原创 2024-04-22 21:51:46 · 41577 阅读 · 7 评论 -
使用 LLaMA Factory 微调 Llama-3 中文对话模型
请申请一个免费 T4 GPU 来运行该脚本。原创 2024-04-22 21:21:46 · 2247 阅读 · 0 评论 -
OpenAI发布全新微调API :ChatGPT支持更详细可视化微调啦!
每个Epoch结束时或者在特定的Epoch间隔时,系统会自动保存当前模型的状态,包括模型的参数(权重和偏置)和优化器的状态。Playground是OpenAI在2022年发布的一个可视化模型比较平台,提供了一个交互式的在线环境,允许用户输入指令或提示,然后将其发送给多个语言模型查看它们的输出结果。微调训练,使用带标注的私有数据,以较小的学习率对整个模型进行训练,直至模型在验证集上的指标达到理想效果。新增的基于 Epoch 的检查点创建功能,可以极大减少模型的重复训练,尤其是在过度拟合的情况下。原创 2024-04-20 23:41:57 · 976 阅读 · 0 评论 -
vLLM-prefix浅析(System Prompt,大模型推理加速)
本文浅析了在大模型推理加速方面一个非常优秀的项目 vLLM 的一个新特性 Prefix。在 Prompt 中有相同前缀时可以提高吞吐量降低延迟,换句话说可以省去这部分相同前缀在自注意力阶段的重复计算。更新 2024.1.18:Prefix 已经合并到主分支上了!如果你的 vLLM 不能使用也许是时候升级一下体验下新功能哩!原创 2024-04-20 11:30:26 · 5245 阅读 · 0 评论 -
AIGC教育行业全景报告:AI助教和家教成真,学习机迎来新机遇
AI以一种新的形式——Agent,融入到教师和学生的日常中,在提供教、学帮助的基础上,改变二者的学习和工作状态。生成式AI将我们带入AI2.0时代,通过海量数据的学习,AI开始出现涌现能力,所生成的答案以一种更符合人类沟通的方式呈现,并且能够一定程度上激发人的思辨意识。而到了脑机时代,AI智能体与人类的交互将更加深入,AI智能体对人类的意图理解及状态分析都将更准确,并且能够对有学习障碍的人群进行干预,人机共融将达到新的高度。在工具使用上,AI智能体降低了教师的学习成本,为其提供几乎零门槛的使用方式。原创 2024-04-16 22:02:30 · 1766 阅读 · 0 评论 -
AI Kimi:帮助教师做好试卷命题
最近,Kimichat工具很火。这款软件不仅仅是一个聊天和阅读工具,还是一个强大的教学辅助工具。作为一位教师,尝试使用Kimichat,发现它在命题方面有着出色的表现,让我深感惊喜。Kimichat为教师可以轻松指定题型、题量以及难度,无论是选择题、填空题还是简答题,都能迅速生成。这一功能极大地减轻了教师的备课压力,使他们能够更专注于教学内容的策划和教学方法的创新。它不仅能生成题目,还能自动生成对应的答案。特别是Kimichat还能完成面命题细目表的生成。原创 2024-04-04 23:14:46 · 3434 阅读 · 0 评论 -
不写代码也能年薪百万?Prompt+低代码开发实战
基本原则:langchain 是一个非常好用的框架,能够帮助我们快速构建基于大模型的应用程序。它提供了很多工具、组件和接口。对于前端来讲甚至可以把它类比成 lodash/jquery 一样的基础库。langchain 的模块大致如上所示,简单介绍一下就是:我们可以看下如何使用 langchain 快速搭建一个基于 GPT 的爬虫应用:结果如下:可以看到,我们结合 langchain + 简单的 prompt 就完成了一个爬虫的编写。原创 2024-03-31 07:22:03 · 1626 阅读 · 0 评论 -
LangGraph 入门与实战
工具的定义,可以参考这篇文章,写的比较详细了,比较方便的就是使用 tools 这个注解。雨飞:使用智普清言的Tools功能实现ToolAgentLangGraph 中最基础的类型是 StatefulGraph,这种图就会在每一个Node之间传递不同的状态信息。然后每一个节点会根据自己定义的逻辑去更新这个状态信息。具体来说,可以继承 TypeDict 这个类去定义状态,下图我们就定义了有四个变量的信息。input:这是输入字符串,代表用户的主要请求。原创 2024-03-25 17:00:14 · 4313 阅读 · 3 评论 -
chatgpt How to call functions with chat models
This notebook covers how to use the Chat Completions API in combination with external functions to extend the capabilities of GPT models. is an optional parameter in the Chat Completion API which can be used to provide function specifications. The purpose原创 2024-03-07 17:19:55 · 1370 阅读 · 0 评论 -
OpenAI要为GPT-4解决数学问题了:奖励模型指错,解题水平达到新高度
对于正确的解决方案,两种方法提供的信息相同,因为每一步都是正确的解题方法。对于每个数据集,OpenAI 提供三种形式的监督:来自 PRM_large 的过程监督,来自 PRM_large 的结果监督以及来自最终答案检查的结果监督。为了更好的比较结果监督和过程监督,首先需要注意的是 ORM 和 PRM 的训练集不具有直接可比性,PRM 训练集是使用主动学习构建的,偏向于答案错误的解决方案,还比 ORM 训练集少一个数量级。图 2 为同一个问题的 2 种解决方案,左边的答案是正确的,右边的答案是错误的。原创 2024-02-28 22:55:57 · 1329 阅读 · 0 评论 -
Prompt 编程的优化技巧
我们使用官方的 ChatGPT 的网页进行多次对话时,很少出现超出 GPT上下文的错误提示,是因为官方的 ChatGPT 会将相对较老的上下文清理掉,从而避免超 GPT 上下文限制的情况发生,这其实也是一种精简 GPT 上下文的思路。OpenAI 按照传入的上下文 + 最新回复的信息总和,然后折算成 Token 计费,所以上下文越多计费越贵,并且成逐步上涨的趋势(因为多轮会话中,上下文会越来越大),所以节省上下文实际上就是节省费用。”,可以缩短 GPT回复的字数,从而减少 Token 消耗。原创 2024-02-26 18:58:54 · 2690 阅读 · 0 评论 -
langchain 部署组件-LangServe
【代码】langchain 部署组件-LangServe。原创 2023-11-22 21:58:42 · 1144 阅读 · 0 评论 -
langchain源码分析-chains模块介绍【2】
这是对langchain源码剖析的系列文章,也有对应的本站视频和b站视频,建议读者可以结合视频和文章一起看。chains对组件的一系列调用,因为在很多场景下,一个完成的功能需要拆分成多个组件调用,将多个组件组合在一起形成完整的pipleline。组件的调用可以理解为是单个功能的实现,可以保证功能的灵活性,在很多的通用场景下都能使用,有利于功能的复用。chains的调用,以完整任务为单位,贴合实际应用。一部分是单个功能实现的chain,是对llm和prompt的封装。原创 2023-11-20 14:52:55 · 380 阅读 · 0 评论 -
LangChain 代理 Agent(学习笔记)
Agent也就是代理,它的核心思想是利用一个语言模型来选择一系列要执行的动作。LangChain的链将一系列的动作硬编码在代码中。而在Agent中,语言模型被用作推理引擎,来确定应该执行哪些动作以及以何种顺序执行。Agent代理Tool工具Toolkit工具包代理执行器接下来我们做逐一介绍。本节课程中,我们学习了什么是Agent代理,Tool工具,以及代理执行器,并学习了它们的基本用法。下一讲我们将学习Callback回调。本节课程的完整示例代码,请参考。原创 2023-11-19 11:35:38 · 1101 阅读 · 0 评论 -
人充当LLM Agent的工具(Human-In-The-Loop ),提升复杂问题解决成功率
在Agent开发过程中,LLM充当Agent的大脑,对问题进行规划、分解、推理,在执行过程中合理选择利用工具(Tool)解决某些具体领域的子问题。一般来说,大家习惯了选择使用搜索、计算器、code interperter之类的工具,但实际上,人也可以作为LLM的工具之一,被添加到解决问题的循环中,这被称作Human-In-The-Loop。而在 "Human In loop "下,Agent专注完成为用户请求,而过程中的人工支持对用户是透明的。举例,让agent回答:科布斯-葛瑞林的生日是几月几号?原创 2023-11-18 22:43:14 · 1698 阅读 · 1 评论 -
LM(大模型)应用开发利器之LangChain,带你走进AI世界
Memory。原创 2023-11-18 19:52:56 · 1134 阅读 · 0 评论 -
[开源]基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案
这一套完整的系统,包括前端聊天应用和一个后台管理系统。系统有用户鉴权,你可以自己使用,也可以部署直接给 C 端用户提供 ChatGPT 的服务。ChatGPT-PLUS 基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案,自带运营管理后台,开箱即用。集成了 OpenAI, Azure, ChatGLM,讯飞星火,文心一言等多个平台的大语言模型。集成了 MidJourney 和 Stable Diffusion AI绘画功能。原创 2023-11-18 07:17:04 · 1866 阅读 · 0 评论 -
Langchain知识点(下)
具体来说,系统将形成任务列表,从任务列表中拉出优先级最高的第一个任务,使用 OpenAI API 根据上下文将任务发送到执行代理并完成任务,一旦这些任务完成,它们就会被存储在内存(或者 Pinecone 这类向量数据库)中,然后,根据目标和上一个任务的结果创建新任务并确定优先级。在这个过程中,驱动任务的是三个不同作用的代理。执行器也负责处理多种复杂情况,包括处理代理选择了不存在的工具的情况、处理工具出错的情况、处理代理产生的无法解析成工具调用的输出的情况,以及在代理决策和工具调用进行观察和日志记录。原创 2023-11-15 18:59:23 · 631 阅读 · 0 评论 -
langchain 之 Tools 多案例使用(一)
如下面代码所示,可以通过接口使用 SQL 语句查询数据库else:params = {else:= 200:Tool,tools = [Tool(),Tool(),Tool(),或者传入构造的函数,比如下面传入的 multi-input,直接传入参数 String 然后分解参数。tools = [Tool(或者自定义类。""""""至于这里为什么 agent=AgentType.OPENAI_FUNCTIONS?文章第二部分会提到。原创 2023-11-15 18:56:13 · 2950 阅读 · 0 评论 -
langchain LLMRequestsChain
使用请求库从URL获取HTML结果,然后使用LLM解析结果。原创 2023-11-15 17:55:32 · 429 阅读 · 0 评论 -
使用GPT-4训练数据微调GPT-3.5 RAG管道
本文探索了LlamaIndex对OpenAI gpt-3.5 turbo微调的新集成。我们通过NVIDIA SEC 10-K归档分析的RAG管道,测试基本模型性能,然后使用gpt-4收集训练数据,创建OpenAIFinetuneEngine,创建了一个新的微调模型,测试了它的性能,并将其与基本模型进行了比较。可以看到,因为GPT4和gpt-3.5 turbo的巨大成本差异(20倍),在使用微调后,我们可以得到近似的效果,并且还能节省不少成本(2.5倍)作者:Wenqi Glantz。原创 2023-11-14 21:35:01 · 1114 阅读 · 0 评论 -
【深度】详细解读与评测OpenAI DevDay的最新API更新与应用
周二凌晨,全球无数AI科技工作者与极客们翘首以盼的首届OpenAI开发者大会上,仅仅四十分钟的主题演讲掌声不断,带给全球AI届大量的震撼与惊喜,很多人惊呼,AI届的iPhone时刻真的已经到来。OpenAI也在当天即向全球开发者更新了带有大量新特性的API Beta版,瞬间引起了互联网极客们的狂欢,各种GPT-4V、Dall-E3、Assistants API的有趣用例也被疯狂传播。原创 2023-11-10 11:49:21 · 560 阅读 · 0 评论 -
OpenAI最新官方GPT最佳实践指南,一文讲清ChatGPT的Prompt玩法
在需要的情况下,可以指示模型编写和运行代码,而不是进行自己的计算。您的任务是仅使用提供的文件回答问题,并引用用于回答问题的文件中的段落。例如,如果用户询问有关特定电影的问题,将有关电影的高质量信息(例如演员、导演等)添加到模型的输入中可能会很有用。使用基于模型的评估可以实际评估的内容与需要人工评估的内容之间的界限是模糊的,并且随着模型变得更强大而不断变化。一旦输入的大小达到预定的阈值长度,这可能会触发一个查询,该查询总结了部分对话,并且先前对话的摘要可以作为系统消息的一部分包含在内。原创 2023-11-03 15:00:06 · 3194 阅读 · 0 评论 -
AI开源 - LangChain UI 之 Flowise
Flowise 是一个为 LangChain 设计的用户界面(UI),使得使用 LangChain 变得更加容易(低代码模式)。通过拖拽可视化的组件,组建工作流,就可以轻松实现一个大语言模型的应用配置,包括不限于 ChatGPT。Github 地址:https://github.com/FlowiseAI/FlowiseLangChain是一个工具箱,它帮助人们更容易地使用"大型语言模型"(LLM)。你可以把它想象成一个翻译器,它可以帮助你和大型语言模型进行交流,而不需要你了解所有的复杂细节。原创 2023-11-01 14:07:41 · 8267 阅读 · 0 评论 -
langchain agent工具介绍(一)
功能: Requests模块来与网页交互,获取网页的数据 类别: 网络搜索 重要程度: ⭐️⭐️⭐️。功能: 使用Wolfram Alpha组件进行计算和求解问题 类别: 底层加强 重要程度: ⭐️。类别: 网络搜索 重要程度: ⭐️。功能: 回答SQL数据库中的问题 类别: 数据库 重要程度: ⭐️⭐️。功能: 处理非结构化数据 类别: 网络搜索 重要程度: ⭐️⭐️⭐️。功能: 无服务器计算服务 类别: 底层加强 重要程度: ⭐️⭐️。功能: 搜索引擎的代理工具 类别: 网络搜索 重要程度: ⭐️。原创 2023-11-01 09:15:48 · 939 阅读 · 0 评论
分享