
深度学习
javastart
专注于大数据 AI
展开
-
OpenSitUp开源项目:零基础开发姿态估计APP
OpenSitUp开源项目:零基础开发姿态估计APP正在上传…重新上传取消AI人工智能初学者|1522021-08-23 01:140001.项目开源地址https://github.com/DL-Practise/OpenSitUpOpenSitUp qq讨论群:9657627512.项目简介计算机视觉中有一个应用分支叫做姿态估计,通过人体关键点的方式来估计出一个/多个人的姿态信息。如下图所示:OpenSitUp是一个基于姿态估计的开源.转载 2022-04-10 11:39:58 · 61 阅读 · 0 评论 -
我用Yolo统计马路上的新能源车占比(四)
通过yolo检测车牌位置,再通过识别网络获取车牌号,最终统计马路上的新能源车占比,非常具有实用价值且充满乐趣的深度学习实践项目。难度中等,适合新手入门。错过前几期的小伙伴可以通过下方链接跳转我用Yolo统计马路上的新能源车占比(一)我用Yolo统计马路上的新能源车占比(二)我用Yolo统计马路上的新能源车占比(三)01前期回顾上一期中,我们从数据增强角度,对车牌识别进行了mixup,彷射变换,模糊处理等,最终在ccpd数据集的测试集上面将top1准确率从0.968转载 2022-04-10 11:30:55 · 26 阅读 · 0 评论 -
英伟达发布最新TensorRT8,性能提升200%
近日,英伟达悄悄地发布了TensorRT 8,BERT-Large推理仅需1.2毫秒!同时还加入了量化感知训练和对稀疏性的支持,实现了性能200%的提升。项目已开源。2019年黄仁勋在GTC China正式发布了TensorRT 7,并称其是「我们实现的最大飞跃」。然而今年TensorRT 8的发布却十分低调。相比于7.0,TensorRT 8可以说是实现了2倍的性能提升。 在1.2毫秒内实现BERT-Large的推理 通过量化感知训练让INT8的精度达到了与F...转载 2022-02-05 13:53:51 · 90 阅读 · 0 评论 -
Pytorch(一) Pytorch 的安装
安装步骤1.检查是否有合适的GPU, 若有安装Cuda与CuDNN2.下载pytorch安装文件,进行pytorch的安装检查电脑是否有合适的GPU在桌面上右击如果能找到NVIDA控制面板,则说明该电脑有GPU。控制面板如下,并通过查看系统信息获取支持的Cuda版本点击 帮助->点击 系统信息 弹出下面的对话框,在驱动程序版本那一栏就能看到该计算机使用的驱动版本。下载Cuda官网:https://developer.nvidia.com/cuda-10.1-..原创 2021-10-09 15:58:36 · 72 阅读 · 0 评论 -
PyTorch指定GPU的方法
PyTorch指定GPU的方法几时见得清梦关注0.4522019.10.22 20:47:28字数 252阅读 38,3211. 改变系统变量使得仅目标显卡可见export CUDA_VISIBLE_DEVICES=0#这里是要使用的GPU编号,正常的话是从0开始 在程序开头设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3' CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py来设置该程序可见的gpu2.原创 2021-09-10 13:19:51 · 531 阅读 · 0 评论 -
20亿参数,大型视觉Transformer来了,刷新ImageNet Top1
2020 年 10 月,谷歌大脑团队提出将标准 Transformer 应用于图像,提出了视觉 Transformer(ViT)模型,并在多个图像识别基准上实现了接近甚至优于当时 SOTA 方法的性能。近日,原 ViT 团队的几位成员又尝试将 ViT 模型进行扩展,使用到了包含 30 亿图像的 JFT-3B 数据集,并提出了参数量高达 20 亿参数的 ViT 变体模型 ViT G/14,在 ImageNet 图像数据集上实现了新的 SOTA Top-1 准确率。基于注意力机制的 Transforme.转载 2021-09-10 13:11:44 · 168 阅读 · 1 评论 -
PyTorch_GPU加速测试
import torchimport timeprint(torch.__version__) # 返回pytorch的版本print(torch.cuda.is_available()) # 当CUDA可用时返回Truea = torch.randn(10000, 1000) # 返回10000行1000列的张量矩阵b = torch.randn(1000, 2000) # 返回1000行2000列的张量矩阵t0 = time.time() .转载 2021-09-08 14:38:47 · 107 阅读 · 0 评论 -
Kaggle实战——点击率预估
《深度学习私房菜:跟着案例学Tensorflow》作者版权声明:本文出自程世东的知乎,原创文章,转载请注明出处:Kaggle实战——点击率预估。请安装TensorFlow1.0,Python3.5项目地址:chengstone/kaggle_criteo_ctr_challenge-点击率预估用来判断一条广告被用户点击的概率,对每次广告的点击做出预测,把用户最有可能点击的广告找出来,是广告技术最重要的算法之一。数据集下载这次我们使用Kaggle上的Display Adve...转载 2021-06-06 19:04:56 · 229 阅读 · 0 评论 -
TensorRT 教材清单
1.英伟达工程师亲授如何用TensorRT加速YOLO目标https://edu.csdn.net/course/detail/25116?utm_medium=distribute.pc_relevant.none-task-course-2~default~BlogCommendFromMachineLearnPai2~default-4.control&depth_1-utm_source=distribute.pc_relevant.none-task-course-2~default~原创 2021-06-06 16:22:13 · 98 阅读 · 0 评论 -
TensorRT 教程(二):TensorRT 源码简介
NVIDIA TensorRT是一种高性能神经网络推理(Inference)引擎,用于在生产环境中部署深度学习应用程序,应用有图像分类、分割和目标检测等,可提供最大的推理吞吐量和效率。TensorRT是第一款可编程推理加速器,能加速现有和未来的网络架构。1. TensorRT 库构成以编译后源码压缩包安装方式进行安装的TensorRT库主要有以下文件夹: 123456 ├── data├── doc├── include # 所有头文件,可...转载 2021-06-06 16:02:49 · 366 阅读 · 2 评论 -
在MovieLens 1M数据集上使用深度学习进行评分预测
https://blog.csdn.net/ChuQiDeCha/article/details/84729177转载 2021-06-05 16:47:47 · 661 阅读 · 0 评论 -
Tensor Core有多牛?
发布时间: 17-12-2820:52智能行业媒体官方账号,鲲鹏计划获奖作者,今年5月,在加州圣何塞举办的 2017 GPU技术大会(GTC 2017)上,英伟达 CEO 黄仁勋发布了使用最新一代架构Volta的NVIDIA Tesla V100,被业界称为“宇宙最快”GPU加速器。12月21日晚8点,智东西策划的英伟达公开课第二期开课,主讲导师NVIDIA中国高级解决方案架构师吴磊就主题《如何为深度学习和HPC提供更高算力—Telsa V100 深度讲解》,对Volta架构的最新特性、GV1...转载 2021-05-28 18:35:16 · 569 阅读 · 0 评论 -
使用 TensorRT 加速深度学习推理
https://developer.nvidia.com/zh-cn/blog/speeding-up-deep-learning-inference-using-tensorrt/这是的更新版本如何用 TensorRT 加速深度学习推理. 此版本从 PyTorch 模型开始,而不是 ONNX 模型,将示例应用程序升级为使用 TensorRT 7 ,并将 ResNet-50 分类模型替换为 UNet ,这是一个分段模型。图 1 。 TensorRT 徽标NVIDIA TensorRT 是..转载 2021-05-23 15:29:22 · 850 阅读 · 1 评论 -
MediaPipe 集成人脸识别,人体姿态评估,人手检测模型
上期文章,我们介绍了MediaPipe Holistic的基础知识,了解到MediaPipe Holistic分别利用MediaPipe Pose,MediaPipe Face Mesh和MediaPipe Hands中的姿势,面部和手界标模型来生成总共543个界标(每手33个姿势界标,468个脸部界标和21个手界标)。对于姿势模型的精度足够低以至于所得到的手的ROI仍然不够准确的情况,但我们运行附加的轻型手重新裁剪模型,该模型起着的作用,并且仅花费了手模型推断时间的10%左右。MediaPip转载 2021-05-05 11:06:33 · 6405 阅读 · 2 评论 -
震惊!AI居然轻松消除马赛克-文字增强,GitHub开源项目上线三天收获近7000星
还在用马赛克的方式隐藏密码?小心被「看穿」。像素化(又称马赛克)是一种常见的打码方式,通过降低图像中部分区域的分辨率来隐藏某些关键信息,比如:再比如:看图找马赛克!(找不到请看右侧原图)但是,在你想隐藏信息的同时,有一些技术却反其道而行之,试图将图片还原为原始状态。最近,一个名为 Depix 的 GitHub 项目爆火,上线三天 star 量已经高达 6.9k。项目作者 Sipke Mellema 是一名信息安全顾问。...转载 2020-12-11 12:28:24 · 961 阅读 · 0 评论 -
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
本文代码、及测试图片在公众号 datadw 里 回复图片分类 即可获取。我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来都很简单,但是跑完了,好像自己还没掌握图片分类的完整流程,因为他们没有经历数据处理的阶段,所以谈不上走过一遍深度学习的分类实现过程。今天我想给大家分享两个比较贴近实际的分类项目,从数据分析和处理说起,以Keras为工具,彻底掌握图像分类任务。这两个分类...原创 2020-12-06 23:35:04 · 330 阅读 · 1 评论 -
深度学习表格检测-table-ocr
https://github.com/chineseocr/table-ocrtable-ocrStar:119table-ocr是一个运用unet实现对文档表格的自动检测,表格重建的OCR项目。OCR工具是目前比较受欢迎,且提高很多工作效率的一类工具。它背后到底是如何实现的?table-ocr这个项目可以帮你揭开它神秘的面纱。img另外,使用过OCR工具的同学应该都清楚,OCR在印刷体文字识别过程中效果越来越好,但是在表格方面一直捉襟见肘。table-ocr就针对表格检原创 2020-11-28 19:43:34 · 3064 阅读 · 2 评论 -
AI × OCR:腾讯文档表格图像识别技术实践
本文主要介绍基于深度神经网络的表格图像识别解决方案。作者:腾讯QQ研发中心——CV应用研究组的yonke1.前言1.1背景大多数人日常办公处理的文件,无非就是表格和文档,其中表格的重要性毋庸置疑。在各行各业的桌面办公场景中,Excel和WPS是电子表格的事实标准。我们经常遇到这种需求:将一个表格图片的内容导入Excel。以前我们只能对着图片把内容一点点敲进excel,既低效又容易出错。近年来,在深度学习的加持下,OCR (Optical Character Recogniti...转载 2020-11-21 10:42:03 · 2200 阅读 · 2 评论 -
自动驾驶中的车道线检测算法汇总
对近两年来车道线检测算法进行汇总,后期将会保持不断更新~1、Efficient Road Lane Marking Detection with Deep Learning2、VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition3、Semi-Local 3D Lane Detection and Uncertainty Estimation4、Robust Lane Mar转载 2020-11-14 23:06:11 · 1733 阅读 · 1 评论 -
走进AI时代的文档识别技术 之表格图像识别
本文链接:https://blog.csdn.net/ShuYunBIGDATA/article/details/103007795版权转载 2020-09-08 13:39:32 · 267 阅读 · 0 评论 -
基于web端和C++的两种深度学习模型部署方式
深度学习Author:louwillMachine Learning Lab 本文对深度学习两种模型部署方式进行总结和梳理。一种是基于web服务端的模型部署,一种是基... 深度学习 Author:louwill Machine Learning Lab 本文对深度学习两种模型部署方式进行总结和梳理。一种是基于web服务端的模型部署,一种是基于C++软件集成的方式进行部署。 基于web服务端的模型部署,主要是通过REST API的形...转载 2020-09-03 22:29:36 · 860 阅读 · 0 评论 -
盘点国内那些深度学习框架:清华计图Jittor、腾讯优图NCNN、百度飞桨PaddlePaddle、阿里X-DeepLearning
本文链接:https://blog.csdn.net/zengNLP/article/details/1050032871、清华计图Jittor清华大学开发了一个名为计图(Jittor)的深度学习框架。计图(Jittor:Just in Time)是一个采用元算子表达神经网络计算单元、完全基于动态编译(Just-in-Time)的深度学习框架,其主要特性为元算子和统一计算图。在编程语言上,Jittor 采用了灵活而易用的 Python。用户可以使用它,编写元算子计算的 Pyt转载 2020-08-26 16:42:21 · 1708 阅读 · 0 评论 -
pycorrector 纠错工具安装
pycorrector中文文本纠错工具。音似、形似错字(或变体字)纠正,可用于中文拼音、笔画输入法的错误纠正。python3.6开发。pycorrector依据语言模型检测错别字位置,通过拼音音似特征、笔画五笔编辑距离特征及语言模型困惑度特征纠正错别字。Demohttps://www.borntowin.cn/product/correctorQuestion中文文本纠错任务,常见错误类型包括:谐音字词,如 配副眼睛-配副眼镜 混淆音字词,如 流浪织女-牛郎织女 字词顺...原创 2020-07-18 14:33:05 · 1202 阅读 · 3 评论 -
模型格式转换工具
一。keras_to_tensorflowhttps://github.com/amir-abdi/keras_to_tensorflow/blob/master/keras_to_tensorflow.py原创 2020-07-04 08:49:21 · 803 阅读 · 0 评论 -
深度学习-模型压缩-PaddleSlim
PaddleSlim是一个模型压缩工具库,包含模型剪裁、定点量化、知识蒸馏、超参搜索和模型结构搜索等一系列模型压缩策略。对于业务用户,PaddleSlim提供完整的模型压缩解决方案,可用于图像分类、检测、分割等各种类型的视觉场景。 同时也在持续探索NLP领域模型的压缩方案。另外,PaddleSlim提供且在不断完善各种压缩策略在经典开源任务的benchmark, 以便业务用户参考。对于模型压缩算法研究者或开发者,PaddleSlim提供各种压缩策略的底层辅助接口,方便用户复现、调研和使用最新论...转载 2020-07-02 23:10:19 · 1260 阅读 · 0 评论 -
常用向量检索组件收集-持续更新中-大家推荐
一。MilvusMilvus 是 一款开源的、针对海量特征向量的相似性搜索引擎。Milvus能够很好地应对海量向量数据,它集成了目前在向量相似性计算领域比较知名的几个开源库(Faiss, SPTAG等),通过对数据和硬件算力的合理调度,以获得最优的搜索性能。二。Faiss - 高维向量相似度检索和聚类库Facebook 开源的一个高性能的高维向量相似度检索和聚类库。开源协议之前采用 BSD + Patents。最新版 v1.5.2 采用 MIT,可以在商业软件中使用。github 上有 60原创 2020-06-20 18:42:51 · 514 阅读 · 0 评论 -
深度学习车道线检测
深度学习检测车道线(一)2019-01-19 10:37:41qq_27546529阅读数9750 中级课 Opencv4图像分割和识别实战课程-车道线检测相关理论知识点-计算机... 第九章:车道线检测1.车道线检测相关理论知识点 [ 27:19 ] 课件付费后下载...基于海思NNIE引擎实现sensor视频识别应用 刘山 55人学习OpenCV4深度神经网... 18课时391分钟688人学习刘山 免费试看 第1节opencv4介绍、安装、调试及运行...转载 2020-06-20 05:44:52 · 9541 阅读 · 1 评论 -
CVPR 2020 论文大盘点-文本图像篇
本文盘点CVPR 2020 所有文本图像(text)相关论文,主要分为手写文本和场景文本两大方向,总计16篇,对文献进行了细致的分类,大部分论文是围绕识别问题的研究。方向包括:1)场景文本检测(Scene Text Detection),从街景等场景文本中检测文本的位置,2 篇文献均为不规则任意形状文本的检测;2)场景文本识别(Scene Text Recognition),对场景文本检测得到的结果进行识别,共 4 篇文章;3)手写文本识别(HandwrittenText Re...转载 2020-06-18 12:10:46 · 1536 阅读 · 0 评论 -
深度学习网络模型压缩剪枝详细分析
一.简介1.背景 深度学习让计算机视觉任务的性能到达了一个前所未有的高度。但,复杂模型的同时,带来了高额的存储空间、计算资源消耗,使其很难落实到各个硬件平台。 为了解决这些问题,压缩模型以最大限度地减小模型对于计算空间和时间的消耗。2.理论基础 必要性:目前主流的网络,如VGG16,参数量1亿3千多万,占用500多MB空间,需要进行300多亿次浮点运算才能完成一次图像识别任务。 可行性:在深度卷积网络中,存在着大量冗余地节点,仅仅只有少部分(5-...转载 2020-06-13 11:48:42 · 3505 阅读 · 0 评论 -
当前有那些深度学习模型剪枝工具
【杂谈】当前模型剪枝有哪些可用的开源工具?mp.weixin.qq.com模型剪枝属于模型优化中的重要技术之一,经过了研究人员多年的研究,工业界也开始有一些实践,那么当前有哪些可用的模型剪枝工具呢?作者&编辑 | 言有三1 TensorflowTensorFlow Model Optimization Toolkit是谷歌官方开源的模型优化技术包,包含了模型剪枝和量化两种API,模型剪枝支持Google提出的一些算法,具体原理可以翻看我们往期文章。https://gi...转载 2020-06-13 11:28:18 · 929 阅读 · 1 评论 -
keras-yolov3目标检测详解——适合新手
展开现在网上能找到的博客我现在看起来很明白,虽然讲的很详细,但是对于几天前的我真的看不明白,因为新手会遇到各种各样毫无征兆的问题,所以我决定写一篇面向新手的如何去使用 yolo 和如何去做自己的数据集来训练属于自己的模型。因为我也是新手,所以不说原理,只谈操作方法。因为东西很杂,我会把小东西分出去写,并且在本文中附上链接。一、准备工作1、事件前言:简单介绍下情况,本人本科二年级,机...转载 2020-03-24 12:50:27 · 1771 阅读 · 0 评论 -
一行命令搞定图像质量评价 | 附代码和操作步骤
在交流群里,经常有人问到图像质量评价的问题。比如对监控摄像头拍摄的多幅图像,挑选一幅图像显示给用户,或者选择一幅图丢给识别模型,又或者在互联网应用里,对于用户上传的多幅图像,选择一幅作为封面。一般要求图像清晰、质量较好,有没有简单的方法实现图像质量评价呢?今天跟大家推荐一个工具,来自德国商品比价服务商idealo开源的图像质量评价工具,仅需要一行命令就可以实现。开源地址:http...原创 2020-03-14 09:47:18 · 298 阅读 · 1 评论 -
没钱买华为P30?这个图像超分辨率项目帮你「拍」出高清照片
华为刚刚发布的 P30「望远镜」手机能在几十米外拍到埃菲尔上的人名,确实令人佩服,但其售价也是令人望而生畏。那么,不买华为手机、高级单反就拍不到充满细节的高清照片了吗?相机不够算法凑,拥有超级拍照能力的手机也离不开算法的加持。本文介绍的图像超分辨率项目可以帮你补齐相机镜头的短板。华为P30 发布会上展示的埃菲尔铁塔高清远距离照片。今天,一位 Reddit 网友贴出...原创 2020-03-14 09:01:56 · 239 阅读 · 0 评论 -
2020年最新款 GPU 选择建议-助你选择最合适你的 GPU
最优(SOTA)的深度学习模型往往需要占用巨大内存。许多GPU通常没有足够的VRAM来存储并训练这些模型。在这篇文章中,将对现有不同型号的GPU进行测试,给出在不超过它们显存的条件下,可以支持训练SOTA的语言/图像模型大小进行测试;还将对每个GPU的训练性能进行基准测试。给需要采购GPU进行可以和工程部署的朋友一些建议。最新常用GPU型号及价格截至2020年2月,以下GP...转载 2020-03-06 21:51:51 · 1239 阅读 · 1 评论 -
选择GPU服务器的五大基本原则
本文根据智东西公开课推出的超级公开课NVIDIA专场第13讲《案例解读:不同行业如何选择深度学习服务器》上的系统讲解整理而来,由NVIDIA NPN合作伙伴负责人吴强、NVIDIA 高级系统架构师易成共同主讲。本次讲解中NVIDIA NPN合作伙伴负责人吴强从性能、可编程性、灵活性等方面对CPU、GPU、FPGA、ASIC等不同类型的服务器进行了系统的比较分析,并给出了五条选择GPU服务...转载 2020-03-05 14:07:50 · 1294 阅读 · 0 评论 -
【OCR技术系列之四】基于深度学习的文字识别(3755个汉字)
上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建。用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeN...转载 2020-02-29 11:38:49 · 392 阅读 · 0 评论 -
DBNet阅读笔记
原网址:https://zhuanlan.zhihu.com/p/94677957Real-time Scene Text Detection with Differentiable Binarization是华科白翔老师团队发表在AAAI2020上的一篇文本检测文章,在PAN的效果上更近一步,效果和性能都再创新高。文章地址https://arxiv.org/pdf/1911.08947....转载 2020-02-06 11:46:33 · 5828 阅读 · 1 评论 -
OpenCV:将视频流式传输到网页浏览器/HTML页面
在本教程中,您将学习如何通过Flask和Python使用OpenCV将视频从网络摄像头流式传输到网页浏览器/HTML页面。您的车被偷过吗?我的车在周末就被偷了。让我告诉您,我很生气。我不能透露太多的细节,因为这个案件还在调查中,但以下是我可以告诉您的:大约六个月前,我和妻子从康涅狄格州的诺沃克搬到了宾夕法尼亚州的费城。我有一辆车,我不经常开,但还是留着它以备不时之需...原创 2020-01-12 11:01:23 · 4941 阅读 · 4 评论 -
图像识别ocr 等经典项目
看到不错的资料,刚好是自己需要的方面,先收集起来。百度图像识别 初赛数据集链接: https://pan.baidu.com/s/19cX6DH4fnQMd4S2_XH-l4w密码: guc3初赛和决赛代码https://github.com/ypwhs/baiduyun_deeplearning_competition:生成车牌号链接:https://pan.baidu.co...原创 2020-01-11 09:22:42 · 1198 阅读 · 1 评论 -
新版本flask快速搭建tensorflow http服务
tensorflow是目前最受欢迎的deep learning框架之一,在学术界和产业界都有广泛的使用。在如何部署tensorflow模型提供远程调用服务方面官方提供了tensorflow serving框架,详细的介绍可以参考官网资料:https://tensorflow.github.io/serving/。本文主要介绍另一条部署服务的途径:利用flask快速搭建tensorflow ...原创 2019-11-16 17:19:46 · 1171 阅读 · 0 评论