
aigc
文章平均质量分 88
javastart
专注于大数据 AI
展开
-
deepseek 技巧整理
请帮我列出减肥期间可以吃的水果,并分析该水果含有的营养元素,以表格的形式星现。1.要以html的方式输出 2.要可以直接运行 3.页面要提供可以直接下载word和excel功能。原创 2025-05-02 21:19:00 · 296 阅读 · 0 评论 -
深入解读大模型开发工具Dify--底层数据存储
dify在使用pg时,使用了两个库dify与dify_plugin。多类型数据库协同:Dify 采用了 PostgreSQL、Redis、文件存储和向量数据库的多层次存储架构,实现了数据的高效管理与快速访问。数据隔离与安全:通过 dify 和 dify_plugin 两个独立数据库的设计,确保了核心数据与插件数据的有效隔离,提升了系统的安全性。灵活部署配置:支持 Docker 部署和源码部署两种模式,通过环境变量配置数据库连接信息,提供了高度的部署灵活性。性能优化机制。原创 2025-04-04 14:04:55 · 829 阅读 · 0 评论 -
pollinations 一个免费文生图、声音、文网站
我们只需要找到一个可以直接访问 url 就能生成图片的 AI 服务即可。以文章开头中的提示词为例,如果要使用文生图的功能,Pollinations 提供了。地址,description 就是需要填充的提示词。同理,如果还有一些其他类似的 AI,也可以这样搞。效果还不错,就是图片渲染出来需要等一会会儿时间。接下来我们再看下上述提示词中所使用到的——我们来测试一下:画一个日出时分的森林。感兴趣的小伙伴快去试试吧~原创 2025-04-02 17:34:57 · 1609 阅读 · 0 评论 -
任务型多轮对话(二)| 意图识别
在任务型多轮对话中,意图识别是一个关键的环节。意图识别是指从用户输入的对话内容(如文本、语音等形式)中分析并判断出用户的目的或者意图。例如,在一个智能客服对话系统中,用户输入“我想要查询一下我的订单状态”,系统通过意图识别就能判断出用户的意图是查询订单状态。它能够帮助对话系统理解用户想要做什么,从而决定对话的走向。如果系统正确识别了用户是要查询订单状态,就可以引导用户提供订单相关的信息,如订单号等,以便完成查询任务。准确的意图识别可以避免系统对用户的回答驴唇不对马嘴。原创 2025-03-21 18:01:23 · 777 阅读 · 0 评论 -
微调数据集开源项目Easy DataSet !
原文:微调数据集太难搞?我直接手搓一个开源项目!微调模型想加餐 文献堆成五指山 传统方法泪两行 AI生成总截断 重复问题脑壳瘫 - 掘金如何将领域文献转换为可供模型微调的数据集?大家好,我是 ConardLi本文为:想微调特定领域的 DeepSeek,数据集究竟要怎么搞? 对应的第一个实战章节,通过今天的文章,将带大家学习:很多情况下,如果你只是需要通过微调来提升模型某一方面的能力,在没有特殊的内部数据要求的情况下,是没必要自己去构造数据集的,因为目前互联网上存在着大量的公开且免费使用的数据集,下面就带大家原创 2025-03-19 07:35:38 · 1909 阅读 · 0 评论 -
学习笔记:利用OpenAI实现阅卷智能体
区别技术特征:区别于最接近的现有技术的技术特征(2.5分);'reply': '共有技术特征:与所对比的技术方案相同的技术特征\n区别技术特征:与所对比的技术方案相区别的技术特征\n附加技术特征:对引用的技术特征进一步限定的技术特征\n必要技术特征:解决技术问题必须可少的技术特征','reply': '共有技术特征:与所对比的技术方案相同的技术特征\n区别技术特征:与所对比的技术方案相区别的技术特征\n附加技术特征:对引用的技术特征进一步限定的技术特征\n必要技术特征:解决技术问题必须可少的技术特征'原创 2025-03-09 18:30:05 · 1026 阅读 · 0 评论 -
手把手教你三步极速蒸馏DeepSeek R1,效果媲美OpenAI o3 mini!
在今年1月末,DeepSeek再度抛出了一个重磅消息:“蒸馏小模型超越OpenAI o1-mini”。按官方公布数据,通过DeepSeek-R1的输出,蒸馏了6个小模型开源给社区,其中32B和70B模型在多项任务上表现与OpenAI o1-mini相当。要知道,蒸馏过程不需要对模型架构进行复杂修改,减少了开发成本,并且比从头训练一个同规模的模型要节省大量的计算资源。如今,原创 2025-03-09 13:05:11 · 702 阅读 · 0 评论 -
手把手教你三步极速蒸馏DeepSeek R1,效果媲美OpenAI o3 mini!
手把手教你三步极速蒸馏DeepSeek R1,效果媲美OpenAI o3 mini!摘要•帮你速读文章内容DeepSeek蒸馏小模型媲美OpenAI,通过百度智能云千帆ModelBuilder,3小时低成本将DeepSeek-R1知识蒸馏至轻量级模型,性能大幅提升,训练成本最低900元,助力企业优化AI模型性能。摘要由作者通过智能技术生成在今年1月末,DeepSeek再度抛出了一个重磅消息:“蒸馏小模型超越OpenAI o1-mini”。原创 2025-03-04 22:00:11 · 928 阅读 · 0 评论 -
OpenAI 和 LiveKit 合作将高级语音转变为 API
近日, LiveKit 与 OpenAI 建立合作伙伴关系,提供可以使用与 ChatGPT 的新高级语音(Advanced Voice)功能相同的端到端技术来构建自己的应用程序。Python 和 Node 中提供的新型多模式代理 API 旨在完全包装 OpenAI 的实时 API,抽象出原始线路协议,并为 GPT-4o 提供干净的“直通”接口。LiveKit 是简化 WebRTC的开源基础设施,而LiveKit Cloud是一个全球服务器网络,经过优化,可以大规模、可靠地传输音频并实现尽可能低的延迟。原创 2025-01-23 17:31:11 · 807 阅读 · 0 评论 -
一文复盘:RAG技术-大模型
RAPTOR 通过递归聚类和总结文本构建层次化的树结构,支持在不同抽象层次上的检索,结合广泛主题和具体细节。它在复杂问答任务中表现优于传统方法,提供树遍历和折叠树方法,以实现高效的信息检索。原创 2024-12-29 23:45:01 · 1300 阅读 · 0 评论 -
阿里云 AI 搜索 RAG 大模型优化实践
第三种方案,也就是我们采用的 RAG 方法,它不改变大模型本身,而是通过检索领域知识,然后结合问题和检索到的知识,用大模型生成答案。此外,由于它不是直接生成答案,而是基于搜索结果,所以可以提供生成答案的依据,解决了可溯源的问题。第一个例子是,当用户询问如何修改云盘的 UUID 时,搜索回来的结果可能是“修改云盘的 UUID 步骤如下”,但接下来的步骤可能被切到了下一个切片。然而,我们发现许多客户的数据中,不同层级的标题可能使用了相同的字号,这就需要我们在数据中进行层级的合并和构造,以模拟客户的实际数据。原创 2024-12-29 23:37:46 · 702 阅读 · 0 评论 -
一文读懂「RAG,Retrieval-Augmented Generation」检索增强生成
检索增强生成(Retrieval Augmented Generation),简称 RAG,已经成为当前最火热的LLM应用方案。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是构建于网络公开的数据,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题。原创 2024-12-29 23:30:41 · 1648 阅读 · 0 评论 -
Twilio 采用 OpenAI 的实时 API,扩展其对话式 AI 功能
事实上,如果 Twilio 客户也拥有前面提到的 CustomerAI 产品,他们可能会对 Segment 中的 Golden Profiles(个性化的客户记录)有更深入的了解。她说:“将 OpenAI 的 Realtime API 与 Twilio 的平台相结合,使企业能够大规模提供更自然、实时的 AI 语音交互。其共享音频笔记的能力,加上 OpenAI 实时 API 的语音功能,可以为更具创新性的自动化消息传递活动铺平道路。企业可以利用这一点来创造更人性化的语音体验,降低运营成本并提高客户满意度。原创 2024-12-28 09:47:49 · 558 阅读 · 0 评论 -
基于 pytorch 实现模型剪枝
torch.nn.utils.prune.is_pruned(module): 判断模块 是否被剪枝。torch.nn.utils.prune.remove(module, name): 用于将指定模块中指定参数上的剪枝操作移除,从而恢复该参数的原始形状和数值。虽然 PyTorch 提供了内置剪枝API,也支持了一些非结构化和结构化剪枝方法,但是API比较混乱,对应文档描述也不清晰,所以后面我还会结合微软的开源nni工具来实现模型剪枝功能。更多剪枝方法实践,可以参考这个github。原创 2024-10-24 07:12:17 · 1197 阅读 · 0 评论 -
学习使用LangGraph x GPT-Researcher构建一个多智能体架构的AI自主研究助理
在这个多智能体系统中,AI的职责被设计与分工到不同的Agent,因此单个Agent的功能其实是比较简单的,而且这里除了browser与researcher这两个Agent(这两个借助了现成的GPT-Researcher库),不需要借助外部的Tools,只需要借助大模型提示来完成即可。最后,在完成Agent与Workflow的创建后,就可以运行已经创建好的Workflow,输入任务信息即可启动一个自主运行的AI研究助理,等待最终输出即可(中间需要给出人类的确认反馈)。原创 2024-09-08 08:04:53 · 1469 阅读 · 0 评论 -
comfyUI和SD webUI都有哪些差别呢?
综上所述,选择ComfyUI还是SD WebUI取决于您的具体需求:如果您追求高性能、自定义工作流并愿意投入时间学习,ComfyUI可能是更好的选择;若您偏好直观易用、丰富的插件资源以及稳定的更新,SD WebUI则可能更适合您。ComfyUI和SD WebUI都是用于AI绘画的用户界面,它们各自有着不同的特点和适用场景。分享一些比较好用的SD模型,可以直接下载免费使用链接地址:「原创 2024-08-22 16:27:36 · 3779 阅读 · 0 评论 -
开源仅 1 天就斩获近万星!超越 RAG、让大模型拥有超强记忆力的 Mem0 火了
人类的记忆有限,但是 Dot 拥有超长的记忆能力,你可以随时 cue 它回答关于你的任何回忆,你发送的文字、语音备忘录、图片、PDF 文件,它都用来形成它的记忆,从而成为一个随时在线的伴侣,帮助你思考生活、发现隐藏的联系并提升自我。Mem0 可以用来开发长期、短期记忆,它能记住用户的偏好、过去的交互、事情的进展,可以为应用构建适应性的学习体验。:Mem0 优先考虑最近的交互,并逐渐忘记过时的信息,确保记忆保持相关和最新,以提供更准确的响应。并且 Mem0 还提供了开发者友好的 API,安装和使用也很简单。原创 2024-08-11 07:42:30 · 667 阅读 · 0 评论 -
Mixture-of-Agents(MoA)
我们的MoA方法在无害性、鲁棒性、正确性、效率、事实性、常识性、洞察力、完整性等方面均优于原Qwen1.5-110B-Chat。值得注意的是,在 AlpacaEval 2.0 上,仅使用开源模型,我们从 57.5% (GPT-4 Omni) 到 65.1% (MoA) 实现了 7.6% 的绝对提升。Mixture of Agents (MoA) 是一种新颖的方法,它利用多个 LLM 的集体优势来提高绩效,实现最先进的结果。通过采用分层架构,每层包含多个 LLM 代理,MoA 在仅使用开源模型的情况下,在。原创 2024-08-10 23:15:10 · 1067 阅读 · 0 评论 -
开源大模型蒸馏工具 DistillKit 介绍
原文:github:原创 2024-08-04 14:15:32 · 900 阅读 · 0 评论 -
一文详解大模型蒸馏工具TextBrewer
TextBrewer为NLP中的知识蒸馏任务设计,融合了多种知识蒸馏技术,提供方便快捷的知识蒸馏框架。模型无关:适用于多种模型结构(主要面向Transfomer结构)方便灵活:可自由组合多种蒸馏方法;可方便增加自定义损失等模块非侵入式:无需对教师与学生模型本身结构进行修改支持典型的NLP任务:文本分类、阅读理解、序列标注等TextBrewer软标签与硬标签混合训练动态损失权重调整与蒸馏温度调整。原创 2024-08-04 07:40:05 · 2222 阅读 · 0 评论 -
大模型瘦身专家!单卡处理Llama 3.1 405B 超强压缩工具LLMC来了
量化,就像是给AI大脑做了一次“瘦身”,通过将模型的权重和激活映射到更低位数的数据格式,不仅减少了模型的体积,还加快了模型的运行速度。LLMC就像是AI的私人减肥教练,它能够帮助研究者和开发者找到最适合的"减肥方案",既能让AI模型变得更轻盈,又不会影响它的"智力水平"。一个拥有1760亿参数的多语言模型Bloom,光是存储模型的权重就需要至少350GB的空间,而且运行起来还需要好几块高级GPU。在量化算法方面,他们探讨了转换、裁剪和重建三种主要技术的影响,就像是比较了不同的运动方式对减肥的效果。原创 2024-08-02 18:38:16 · 608 阅读 · 0 评论 -
ray集群部署vllm的折磨
这个想法是在去年下半年的时候萌发的,当时开源界已经有很多LLM inference的框架,比如:huggingface transformer(包括accelerate)包,deepspeed-inference/deepspeed-FastGen(似乎现在做了集成,改名为deepspeed-MII),还有GGUF格式的inference,以及今天的主角vllm。虽然问题得到了解决,但是我心里仍然很不安,原因很简单:我的解决方案并不是vllm官方支持的,只是通过研读源码,自行找到的解决方案。原创 2024-08-02 17:10:08 · 3639 阅读 · 0 评论 -
使用FastChat快速部署LLM服务
FastChat 的 Worker 会向 Controller 注册自身,并通过心跳机制保持连接。使用 FastChat OpenAI API Server 的端点初始化。为了避免潜在的依赖冲突,创建单独的虚拟环境用于FastChat部署。为了获得更好的推理性能,推荐使用vLLM作为后端来加速推理。服务启动后,默认端口是 8000,可以通过。关闭 OpenAI API Server。参数是设置服务的主机地址,这里设置为。,表示可以通过任何地址访问。关闭 Controller。原创 2024-08-02 17:02:32 · 1631 阅读 · 0 评论 -
大模型量化技术原理-SmoothQuant
根据量化参数s(数据量化的间隔)和z(数据偏移的偏置)的共享范围,即量化粒度的不同,量化方法可以分为逐层量化(per-tensor)、逐通道(per-token & per-channel 或者 vector-wise quantization )量化和逐组量化(per-group、Group-wise)。近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。原创 2024-08-02 09:25:48 · 1229 阅读 · 0 评论 -
2024大语言模型入门指南:从小白到高手(基础篇)
硬件资源篇。原创 2024-07-31 17:54:05 · 3003 阅读 · 0 评论 -
LLaMA-Factory QuickStart
数据集的格式要求在不同的阶段是不同的,本教程以sft阶段的数据集需求,将以系统自带的identity数据集和将自定义的一个商品文案生成数据集为例,介绍数据集的使用。更多详情可以在中找到相关解释。系统目前支持 alpaca 和sharegpt两种数据格式,以alpaca为例,整个数据集是一个json对象的list,具体数据格式为"instruction": "用户指令(必填)","input": "用户输入(选填)","output": "模型回答(必填)",原创 2024-07-31 15:27:41 · 1850 阅读 · 0 评论 -
听说可以用ChatGPT写答辩意见了?GPT模型在律师法律文书写作领域的助益与不足
原文:https://zhuanlan.zhihu.com/p/651345473今年以来,以ChatGPT为代表的新型人工智能语言模型(统称为“GPT模型”)风靡全球,对各行业均产生了不同程度的冲击。就律师行业而言,主要针对以GPT模型能否取代律师工作,在何种程度上能够为律师工作提供协助,可能存在及产生的法律风险等方面,实务界展开了热烈的讨论。本文以笔者所在团队实际代理的某侵权责任案为切入点,尝试展示GPT模型分析该案的视角、层次及逻辑,并通过与法院判决部分的对比,揭示GPT模型在案情分析及文原创 2024-07-27 22:41:58 · 1024 阅读 · 0 评论 -
法律 | 法律人AI使用指南
原文:法律 | 法律人AI使用指南|法官|法院|文书|公司法_网易订阅01引言过去半年多,我一直在尝试着用AI来辅助自己的各项法律工作,将AI融入自己的日常工作之中,并试图形成自身稳定的“法律+AI”工作流。在此过程中,我时常惊讶于AI高效的工作能力,也不时会感到失望——他有他的长处,也有他的局限——逐渐地,我学会了扬长避短,也算积累了一些经验与教训,所以这篇文章既是分享,也是对过去自身工作经验的梳理与总结。我有一个比喻:在AI时代,对于法律工作而言,AI擅长的不是从0到1,而是从1到90原创 2024-07-27 17:05:21 · 2613 阅读 · 0 评论 -
搭建多元专家系统(MOA):轻松整合大模型的力量(二)
近期,AI领域出现了一个引人注目的新现象——“逆转诅咒”(Reversal Curse),这一概念迅速成为热点话题,影响了现今所有的大型语言模型。令人惊讶的是,即便面对极为基础的问题,这些模型的准确率不仅几乎为零,而且似乎没有改善的迹象。更重要的是,这一问题的存在与模型的规模或提问的具体内容无关。在预训练大模型时代,人们曾乐观地认为AI开始展现出一定的逻辑推理能力,然而“逆转诅咒”的出现仿佛让这一切回到了起点。原创 2024-07-21 21:35:44 · 1119 阅读 · 0 评论 -
一种基于LLM的辅助教学方法与流程
这些功能通过与教学辅助模型的交互实现,包括发送指令、输入学生的学习需求和学科知识点、输入学生的学习进度和水平等。13、信息补充,用户向教学辅助平台发送需求指令,教学辅助平台通过prompt交互向教学辅助模型补充更具体的信息,包括针对原信息点进行二次展开,或者结合所有补充的信息,重新生成全面教学辅助信息。36、信息补充,用户向教学辅助平台发送需求指令,教学辅助平台通过prompt交互向教学辅助模型补充更具体的信息,包括针对原信息点进行二次展开,或者结合所有补充的信息,重新生成全面教学辅助信息。原创 2024-04-28 19:00:46 · 1154 阅读 · 0 评论 -
探索LLM大模型在教育领域的应用前景
其中,$\mathbf{h}w$ 表示单词的向量表示,$\mathbf{E}$ 表示词嵌入矩阵,$\mathbf{x}w$ 表示单词的一热编码向量,$\mathbf{b}_w$ 表示单词的偏置向量。其中,$\mathbf{Q}$ 表示查询矩阵,$\mathbf{K}$ 表示关键字矩阵,$\mathbf{V}$ 表示值矩阵,$d_k$ 表示关键字向量的维度。其中,$\text{head}_i$ 表示单个自注意力层的计算结果,$h$ 表示多头注意力的数量,$\mathbf{W}^O$ 表示输出权重矩阵。原创 2024-04-28 18:56:03 · 1952 阅读 · 0 评论 -
【ChatGPT】AI评论家,适合点评论文和文章的Prompt模
使用方法:复制下述提示词到ChatGPT,然后把需要评价的文本复制到文末。编辑于 2023-07-29 02:36・IP 属地上海。4. 小编审稿(可以早下班了!2. 老师给学生的作文打分。3. 业余评论家点评文章。1. 家长辅导孩子写作。原创 2024-04-28 17:04:46 · 2022 阅读 · 0 评论 -
CHATGPT对写作业的好处
本文目录一览1、chatGPT对写作业的好处2、chatGPT批改作业3、chatGPT完成作业4、chatGPT写作业水平超过大学生5、美国大学生用chatGPT写作业大家好,今天来为您分享chatGPT对写作业的好处的一些知识,本文内容可能较长,请你耐心阅读,如果能碰巧解决您的问题,别忘了关注本站,您的支持是对我们的最大鼓励!其实这么做的目的也是投喂chatGPT,让它围绕你的主题,学习不同的知识,例如高引文献、综述文献、按时间或按某些主题的文献、指定某些期刊的文献等等。原创 2024-04-28 10:32:37 · 1945 阅读 · 0 评论 -
人工智能技术在教育中的潜力有多大
原文:人工智能技术在教育中的潜力有多大作者:大全Prompt链接:https://www.zhihu.com/question/637034129/answer/3346272227来源:知乎谢邀:在技术快速发展的今天,人工智能(AI)技术在教育领域的应用正成为一个热门话题。AI技术在教育中的潜力是巨大的,它不仅能够改变教学方式,还能提升学习效率,实现个性化教育。原创 2024-04-28 07:54:14 · 2731 阅读 · 0 评论 -
大模型推理优化之 KV Cache
KV Cache,即键-值缓存,是一种用于存储键值对数据的缓存机制。在语言模型的推理过程中,经常需要多次访问相同的数据,而KV Cache通过将这些数据缓存到内存中,提供了快速的数据访问速度,从而加速推理过程。该技术仅应用于解码阶段。如 decode only 模型(如 GPT3、Llama 等)、encode-decode 模型(如 T5)的 decode 阶段,像 Bert 等非生成式模型并不适用。原创 2024-04-25 09:32:20 · 4390 阅读 · 0 评论 -
Colab使用教程(超级详细版)及Colab Pro/Pro+评测
Pro+增加到了3个高RAM会话和3个标准会话,在Pro基础上又翻了2.5倍,相当于免费版算力的9倍,Pro+的52GB的高RAM和Pro的25GB的高RAM相比也略有提升(10分钟的epoch能快2分钟左右)。在打开笔记本后,我们默认的文件路径是"/content",这个路径也是执行笔记本时的路径,同时我们一般把用到的各种文件也保存在这个路径下。如果在有代码块执行的情况下继续点击其他代码块的“播放”按钮,则这些代码块进入“等待执行”的状态,按钮也就会进入转圈的状态,但外部的圆圈是虚线。原创 2024-04-22 21:51:46 · 30452 阅读 · 5 评论 -
使用 LLaMA Factory 微调 Llama-3 中文对话模型
请申请一个免费 T4 GPU 来运行该脚本。原创 2024-04-22 21:21:46 · 2030 阅读 · 0 评论 -
OpenAI发布全新微调API :ChatGPT支持更详细可视化微调啦!
每个Epoch结束时或者在特定的Epoch间隔时,系统会自动保存当前模型的状态,包括模型的参数(权重和偏置)和优化器的状态。Playground是OpenAI在2022年发布的一个可视化模型比较平台,提供了一个交互式的在线环境,允许用户输入指令或提示,然后将其发送给多个语言模型查看它们的输出结果。微调训练,使用带标注的私有数据,以较小的学习率对整个模型进行训练,直至模型在验证集上的指标达到理想效果。新增的基于 Epoch 的检查点创建功能,可以极大减少模型的重复训练,尤其是在过度拟合的情况下。原创 2024-04-20 23:41:57 · 900 阅读 · 0 评论 -
常用推理框架介绍
请注意,由于工具和项目的更新和变化,GitHub链接可能会发生变化或不再可用。在访问链接时,请确保检查链接的有效性,并参考最新的官方文档和社区信息。此外,一些工具可能是私有或受限制的,因此可能无法直接访问其GitHub仓库。在这种情况下,你可以通过官方渠道或相关社区来获取更多信息和支持。原创 2024-04-20 22:00:17 · 1939 阅读 · 1 评论 -
LLM 推理优化探微 (3) :如何有效控制 KV 缓存的内存占用,优化推理速度?
由于模型权重和不断增长的 KV 缓存都必须在每次前向传递(forward pass)时加载,解码步骤涉及非常大的数据传输,正如我们将在接下来的文章中看到的那样,实际上是受内存带宽限制的,也就是说,我们实际上花在移动数据上的时间要多于做有用工作(即计算)的时间。只有那些对权重和“activations”(即不是权重的其他任何内容)都进行量化的算法,比如 LLM.int8() [17] 或 SmoothQuant [18],才能产生经过量化的 KV 缓存,将其转换为较低精度的表示形式。原创 2024-04-20 12:29:26 · 1556 阅读 · 0 评论