算法
文章平均质量分 81
javastart
专注于大数据 AI
展开
-
基于协同过滤混合算法的餐饮推荐系统设计与实现
推荐引擎是协同过滤算法在本餐饮系统中实现个性化推荐的核心,本餐饮系统的设计采用基于用户和基于物品的协同过滤混合算法,推荐引擎中不仅要分析用户间、物品间的相关性,而且要根据具体情况进行推荐算法的选择,实现高效、准确的个性化推荐服务,推荐引擎架构图如图2所示。摘 要: 为了改善单一协同过滤算法在餐饮推荐系统中存在的“數据稀疏”问题,采用基于用户的协同过滤算法和基于物品的协同过滤算法相融合的方式,两种算法之间取长补短,设计餐饮推荐系统推荐引擎架构,实现基于协同过滤混合算法的餐饮推荐系统。转载 2023-05-03 16:36:23 · 688 阅读 · 0 评论 -
大数据|Spark技术在京东智能供应链预测的应用案例深度剖析(一)
大数据|Spark技术在京东智能供应链预测的应用案例深度剖析(一) 2017-03-27 11:58 浏览次数:148 1. 背景前段时间京东公开了面向第二个十二年的战略规划,表示京东将全面走向技术化,大力发展人工智能和机器人自动化技术,将过去传统方式构筑的优势全面升级。京东Y事业部顺势成立,该事业部将以服务泛零售为核心,着重智能供应能力的打造,核心使命是利用人转载 2017-03-28 19:58:48 · 6330 阅读 · 0 评论 -
旅游推荐系统的演进
旅游推荐系统的演进郑刚 ·2017-03-24 18:04背景度假业务在整个在线旅游市场中占据着非常重要的位置,如何做好做大这块蛋糕是行业内的焦点。与美食或酒店的用户兴趣点明确(比如找某个确定的餐厅或者找某个目的地附近的酒店)不同,旅游场景中的用户兴趣点(比如周末去哪儿好玩)很难确定,而且会随着季节、天气、用户属性等变化而变化。这些特点导致传统的信息检索并不能很好的满足转载 2017-03-28 19:56:50 · 4951 阅读 · 2 评论 -
滴滴算法大赛算法解决过程 - 拟合算法
滴滴算法大赛算法解决过程 - 拟合算法拟合概论Gap的预测,是建立在一个拟合函数上的。也有一些机器学习的味道。总的Gap函数 = 函数(时间,地区)TimeID : 时间片编号DistricID:地区编号Traffic:交通流量Weather:天气POI:设施数百度地图POI说明注意:每家公司的POI分类都是不同的,这里只是将百度转载 2017-03-06 20:29:23 · 2398 阅读 · 0 评论 -
天池大赛 道路匹配试题
文件名称 (报名后可下载)文件格式dataSets.zip.zip (8MB) scripts.zip.zip (4KB) dataSets.zip (mirror link)download KDD CUP 2017Highway Tollgates Traffic Flow Predicti转载 2017-03-06 20:09:19 · 1258 阅读 · 0 评论 -
【机器学习详解】决策树与随机森林算法
【机器学习详解】决策树与随机森林算法2016-07-04 0 个评论 来源:勿在浮砂筑高台 收藏 我要投稿决策树决策树模型是一种树形结构,基于特征对实例进行分类或回归的过程。即根据某个特征把数据分划分到若干个子区域(子树),再对子区域递归划分,直到满足某个条件则停止划分并作为叶子节点,不满足条件则继续递归划分。转载 2017-02-26 19:04:44 · 726 阅读 · 0 评论 -
spark机器学习库指南[Spark 1.3.1版]——决策树(decision trees)
spark机器学习库指南[Spark 1.3.1版]——决策树(decision trees)fuqingchuan 机器学习 2015-03-22 3,477 次浏览 GINI, spark, 决策树, 熵 spark机器学习库指南[Spark 1.3.1版]——决策树(decision trees)已关闭评论下面是章节决策树的目录(其他内容参见全文目录)转载 2017-02-26 19:00:55 · 1448 阅读 · 0 评论 -
一种基于贝塞尔曲线的终端定位轨迹拟合方法
一种基于贝塞尔曲线的终端定位轨迹拟合方法专利名称一种基于贝塞尔曲线的终端定位轨迹拟合方法技术领域本发明属于卫星导航领域,具体涉及一种基于贝塞尔曲线的终端定位轨迹拟合方法。背景技术目前有很多设备(例如车载终端、手机终端等定位终端)大都具备基于GNSS(Global Navigation Satellite System,全球卫星导航系统)卫星定位的功能。定位终端通过在移动过程中采集的转载 2017-02-16 09:08:20 · 3239 阅读 · 0 评论 -
从算法上解读自动驾驶是如何实现的?
从算法上解读自动驾驶是如何实现的?科技新闻小鹏汽车2016-03-28 10:42分享3评论[摘要]车辆路径规划问题中路网模型、路径规划算法和交通信息的智能预测为关键点。由于驾驶员的驾驶工作繁重,同时随着汽车拥有量的增加,非职业驾驶员的数量增多,导致交通事故频繁发生。如何提高汽车的主动安全性和交通安全性已成为急需解决的社会性问题。转载 2017-01-29 17:55:05 · 15299 阅读 · 1 评论 -
地图匹配算法实践
地图匹配算法实践1 背景如下图所示,1、2、3 这三个点是汽车的GPS定位结果,尽管汽车是在道路上,但定位结果与道路存在偏差。地图匹配(Map Matching)是指将行车轨迹的经纬度采样序列与数字地图路网匹配的过程,其本质上是平面线段序列的模式匹配问题( Alt等,2003)。在实际应用中,GPS采样信号的质量会严重影响地图匹配结果:采样频率的降低、定位误转载 2017-02-21 19:37:42 · 20048 阅读 · 69 评论 -
经纬度坐标和投影坐标的转换
经纬度坐标和投影坐标的转换标签: gis投影坐标geotools2015-12-11 09:28 3908人阅读 评论(1) 收藏 举报 分类:GIS(28) 版权声明:本文为博主原创文章,未经博主允许不得转载。昨天,有朋友要我帮忙看看一个将经纬度坐标转换成墨卡托投影(墨卡托投影有很多变种,我也不知道他说的是哪一种)的程序,他转载 2017-04-14 13:28:40 · 5383 阅读 · 0 评论 -
行业 | 基于Hadoop架构电子数据取证框架研究
行业 | 基于Hadoop架构电子数据取证框架研究2017-03-14 王远征 明略数据摘 要:Hadoop架构是目前大数据应用的主流架构,随着大数据应用的快速发展,在电子数据取证中越来越多遇到Hadoop数据架构的取证。基于分布式计算的Hadoop架构与传统的计算机取证环境存在较大区别。从取证视角对Hadoop复杂架构进行了抽象,建立了Hadoop架构数据取证分层转载 2017-05-03 19:41:02 · 1507 阅读 · 0 评论 -
训练集样本不平衡问题对深度学习的影响
自己在进行人脸识别测试过程,开始利用自己的照片进行训练,由于开始准确率低,就开始增加自己照片的数量,开始是准确率提升,而后就开始降低,以前了解过这个方面知识,因此在网上找一些相关资料进行验证,后来发现有人进行过详细的测试,于是自己进行一些梳理。实验数据与使用的网络所谓样本不平衡,就是指在分类问题中,每一类对应的样本的个数不同,而且差别较大。这样的不平衡的样本往往使机器学习算法的表现变...原创 2019-08-11 19:37:16 · 4443 阅读 · 1 评论 -
八大机器学习框架对比及Tensorflow的优势
版权声明: https://blog.csdn.net/u013063153/article/details/54728628八大机器学习框架的对比:(1) TensorFlow:深度学习最流行的库之一,是谷歌在深刻总结了其 前身 DistBelief 的经验教训上形成的;它不仅便携、高效、可扩 展,还能再不同计算机上运行:小到智能手机,大到计算机集群都 能;它是一款轻量级的软件,...转载 2018-09-27 13:32:23 · 8606 阅读 · 0 评论 -
快速精准的人头检测,代码已开源
昨天arXiv一篇新上论文《FCHD: A fast and accurate head detector 》,来自江森自控(Johnson Controls Inc.)的软件工程师Aditya Vora分享了一种快速精准的人头检测(head detector)算法并开源了代码。先来看看作者发布的视频效果: 看起来还是不错的!人头检测在视频监控中非常重要,而公交车、商场或者大型场馆...转载 2018-09-27 13:27:08 · 24335 阅读 · 15 评论 -
遗传算法入门
遗传算法简介:遗传算法(Genetic algorithm)属于演化计算( evolutionary computing),是随着人工智能领域发展而来的一种智能算法。正如它的名字所示,遗传算法是受达尔文进化论启发。简单来说,它是一种通过模拟自然进化过程搜索最优解的方法。如果你想了解遗传算法相关的知识,可以学习实验楼上的教程:【Python实现遗传算法求解n-queens问题】,该实验...转载 2018-08-11 14:15:43 · 5406 阅读 · 0 评论 -
即时配送的订单分配策略:从建模和优化
即时配送的订单分配策略:从建模和优化井华 ·2017-10-11 12:11序言最近两年,外卖的市场规模持续以超常速度发展。近期美团外卖订单量峰值达到1600万,是全球规模最大的外卖平台。目前各外卖平台正在优质供给、配送体验、软件体验等各维度展开全方位的竞争,其中,配送时效、准时率作为履约环节的重要指标,是外卖平台的核心竞争力之一。要提升用户的配送时效和准时率,转载 2017-12-09 19:06:46 · 17966 阅读 · 1 评论 -
智能分单算法
大数据讨论群:104595215 387084660大数据算法:385010646 nlp研究与讨论 413423481 hive impala 288047381 spark scala 464791668 机器学习与深度学习256154524 104595215微服务架构实战 181942601 用户画像交流193467273 docker 521020621转载 2017-11-07 20:39:54 · 1569 阅读 · 1 评论 -
马尔可夫时序预测法
马尔可夫时序预测法马尔可夫时序预测法(Markov Forecasting Model)目录1 马尔可夫预测法概念2 马尔可夫分析的基础原理[1]3 什么是马尔可夫过程4 转移概率和转移概率矩阵5 马尔可夫预测法案例分析5.1 案例一:马尔可夫预测法进行某企业经营状况预测[2]5.2 案例二:马尔可夫预测法的应用6 参考文献转载 2017-05-07 19:20:14 · 9673 阅读 · 0 评论 -
如何构建一个反电信网络诈骗基础模型
如何构建一个反电信网络诈骗基础模型 2017-05-10 11:26 浏览次数:413文|西角边的MR网络诈骗,电信诈骗层出不穷,花样翻新,防不胜防,伤害普通百姓利益。本文通过对目前社会上关于网络电信诈骗新闻进行提取,从中分析当前网络诈骗发展趋势和关键因素,进而构建合理的反诈骗模型。一、对关键词的分析参考如何从新闻中识别骗子们的小转载 2017-05-25 20:21:40 · 8259 阅读 · 4 评论 -
外卖订单量预测异常报警模型实践
一、前言外卖业务的快速发展对系统稳定性提出了更高的要求,每一次订单量大盘的异常波动,都需要做出及时的应对,以保证系统的整体稳定性。如何做出较为准确的波动预警,显得尤为重要。从时间上看,外卖订单量时间序列有两个明显的特征(如下图所示):周期性。每天订单量的变化趋势都大致相同,午高峰和晚高峰订单量集中。实时性。当天的订单量可能会受天气等因素影响,呈现整体的上涨或下降。订转载 2017-04-24 20:49:11 · 8391 阅读 · 2 评论 -
佳吉快运城市配送智能调度平台的应用_图文73
佳吉快运城市配送智能调度平台的应用_图文73佳吉快运城市配送智能调度平台的应用;佳吉快运是一家以公路零担运输为主的现代物流企业,;随着移动终端(MovableTerminatio;本案例通过推广基于移动终端的智能调度平台实现对货;1、应用企业简况;上海佳吉快运有限公司是一家主要从事公路零担货物运;佳吉快运自成立以来,运输业务每年都在以15%至3;在服务社会的同时,佳转载 2017-04-23 18:52:03 · 1212 阅读 · 0 评论 -
利用深度学习方法进行情感分析以及在海航舆情云平台的实践
javastart贡献值:0等級:L10发布0评论0顶发布链接发布图文 全部主题我关注的主题GEEKNEWSRustSwift全栈工程师/homePrestoDB人工智能前端Spark云计算潜水猿Container物联网(IoT)SDN安全技术翻译VR/ARAndroid开发者iOS开发转载 2017-02-21 18:40:20 · 5362 阅读 · 0 评论 -
opencv学习(三十二)之图像边缘检测Soble_Laplace_Canny
1. Sobel算子前面我们已经介绍了图像的卷积操作,而一个最重要的卷积运算就是对导数的计算,假设我们需要检测图像中的边缘部分,如下图所示: 前面我们介绍图像的高频和低频分量的时候说到,图像的高频分量一般出现在像素值显著改变的地方,而高频分量的出现就容易勾画出图像的轮廓。在高等数学中我们知道函数变化剧烈其所对应的导数值越大(极大值),所以表示图像像素值改变最大的一个方法就是求出图转载 2017-02-20 18:58:49 · 698 阅读 · 0 评论 -
小米品牌广告引擎与算法实践
品牌广告是小米商业化的重大战略方向,在小米视频、音乐、浏览器等多个媒体广泛投放,广告样式也越来越多样,开屏、视频、信息流等。品牌广告主对投放的需求也日益复杂和多样化,精准定向、频控、跨媒体投放、预算平滑等使得品牌广告投放引擎和算法面临着诸多挑战,包括流量预估、库存分配和在线投放算法等。本次分享重点介绍了小米品牌广告引擎与算法实践,包括系统架构和各种离线和在线算法。小转载 2017-02-20 18:56:48 · 6607 阅读 · 3 评论 -
基于内容推荐的个性化新闻阅读实现(二):基于SVD的推荐算法
基于内容推荐的个性化新闻阅读实现(二):基于SVD的推荐算法时间 2016-06-24 12:23:02 Nicol的博客铭原文 https://taozj.org/2016/06/基于内容推荐的个性化新闻阅读实现(二):基于SVD的推荐算法/主题 奇异值分解 推荐系统一、前言SVD前面已经说了好多次了,先不论其信息检索被宣称的各种长处如何如何,在此转载 2016-06-24 13:21:20 · 4412 阅读 · 1 评论 -
LBS推荐系统的设计方法
摘要:推荐系统是兴趣点系统的核心,本文将重点介绍推荐系统。推荐系统是一个很庞大的课题,该文主要讲述推荐系统的设计方法,包含推荐系统的数学基础和设计原理。在 《程序员》12月刊A中,我们介绍了POI(兴趣点)的设计及其搜索。由于推荐系统是兴趣点系统的核心,所以接下来,我们将介绍推荐系统。推荐系统是一个很庞大的课题,将分成两期予以介绍:本期讲述推荐系统的设计方法,包含推荐系统的数学基础和设转载 2016-03-13 17:13:23 · 1355 阅读 · 0 评论 -
Spark 随机森林算法原理、源码分析及案例实战
Spark 随机森林算法原理、源码分析及案例实战时间 2015-10-20 12:00:00 IBM developerWorks中国原文 http://www.ibm.com/developerworks/cn/opensource/os-cn-spark-random-forest/index.html?ca=drs-主题 算法 决策树源码分析转载 2016-02-03 20:09:05 · 5135 阅读 · 0 评论 -
Spark入门实战系列--9.Spark图计算GraphX介绍及实例
注】该系列文章以及使用到安装包/测试数据 可以在《倾情大奉送--Spark入门实战系列》获取1、GraphX介绍1.1 GraphX应用背景Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求。众所周知·,社交网络中人与人之间有很多关系链,例如Twitter、Facebook、微博和微信等转载 2016-02-02 20:50:35 · 1920 阅读 · 0 评论 -
【论文笔记】SparkNET: 用Spark训练深度神经网络
【论文笔记】SparkNET: 用Spark训练深度神经网络标签: 深度学习机器学习spark神经网络2015-12-27 23:00 1368人阅读 评论(0) 收藏 举报 分类:【机器学习&深度学习】(9) 【Spark-Python-机器学习】(3) 版权声明:如需转载,请附上本文链接,不甚感激!作者主页:http://blog.csd转载 2016-02-16 12:25:43 · 3661 阅读 · 0 评论 -
FP-growth算法,fpgrowth算法详解
FP-growth算法,fpgrowth算法详解使用FP-growth算法来高效发现频繁项集前言你用过搜索引擎挥发现这样一个功能:输入一个单词或者单词的一部分,搜索引擎酒会自动补全查询词项,用户甚至实现都不知道搜索引擎推荐的东西是否存在,反而会去查找推荐词项,比如在百度输入“为什么”开始查询时,会出现诸如“为什么我有了变身器却不能变身奥特曼”之类滑稽的推荐结果,为了给出这些推荐查询转载 2016-01-15 08:40:32 · 81175 阅读 · 10 评论 -
利用MapReduce求海量数据中最大的K个数
利用MapReduce求海量数据中最大的K个数 [java] view plain copypackage jtlyuan.csdn; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.ha转载 2016-02-14 13:53:54 · 3648 阅读 · 1 评论 -
Spark分区器HashPartitioner和RangePartitioner代码详解
在Spark中分区器直接决定了RDD中分区的个数;也决定了RDD中每条数据经过Shuffle过程属于哪个分区;也决定了Reduce的个数。这三点看起来是不同的方面的,但其深层的含义是一致的。 我们需要注意的是,只有Key-Value类型的RDD才有分区的,非Key-Value类型的RDD分区的值是None的。 在Spark中,存在两类分区函数:HashPartitioner和R转载 2016-02-13 17:30:54 · 5096 阅读 · 0 评论 -
Reservoir sampling(水塘抽样)
Reservoir sampling(水塘抽样) 题目1:给出一个数据流,这个数据流的长度很大或者未知。并且对该数据流中数据只能访问一次。请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等。对于复杂问题一定要学会归纳总结,即从小例子入手,然后分析,得出结论,然后在证明。不然遇到一个抽象问题,不举例感觉这个问题,直接解还是比较难的。对于此问题的难处就是数据流转载 2016-01-30 12:19:58 · 9234 阅读 · 4 评论 -
基于Spark MLlib平台的协同过滤算法---电影推荐系统
基于Spark MLlib平台的协同过滤算法---电影推荐系统 又好一阵子没有写文章了,阿弥陀佛...最近项目中要做理财推荐,所以,回过头来回顾一下协同过滤算法在推荐系统中的应用。 说到推荐系统,大家可能立马会想到协同过滤算法。本文基于Spark MLlib平台实现一个向用户推荐电影的简单应用。其中,主要包括三部分内容:协同过滤算法概述转载 2016-01-17 16:38:55 · 4063 阅读 · 0 评论 -
使用机器学习算法对流量分类的尝试——基于样本分类
使用机器学习算法对流量分类的尝试——基于样本分类Hochikong• 16-07-06• 115 人围观导言机器学习方法目前可以分为5个流派,分别是符号主义,联结主义,进化主义,贝叶斯和Analogzier。具体到实例有联结主义的神经网络,进化主义的遗传算法,贝叶斯的朴素贝叶斯(Naive Bayes)等等。机器学习算法又可以分为多种转载 2016-07-06 20:30:24 · 9003 阅读 · 1 评论 -
使用机器学习算法对流量分类的尝试——基于样本分类
使用机器学习算法对流量分类的尝试——基于样本分类Hochikong• 16-07-06• 115 人围观导言机器学习方法目前可以分为5个流派,分别是符号主义,联结主义,进化主义,贝叶斯和Analogzier。具体到实例有联结主义的神经网络,进化主义的遗传算法,贝叶斯的朴素贝叶斯(Naive Bayes)等等。机器学习算法又可以分为多种转载 2016-07-06 20:38:21 · 1145 阅读 · 0 评论 -
Spark-MLlib实例——决策树
Spark-MLlib实例——决策树通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:[plain] view plain copy 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。转载 2017-02-18 18:09:02 · 1896 阅读 · 0 评论 -
模仿百度地图的LBS服务——路线规划篇(v 3.1.1)
模仿百度地图的LBS服务——路线规划篇(v 3.1.1)标签: 百度地图android2014-12-14 19:30 1486人阅读 评论(0) 收藏 举报 分类:Android 百度地图(4) 一、前言转载请标明出处:http://blog.csdn.net/wlwlwlwl015/article/deta转载 2017-02-17 08:51:54 · 1104 阅读 · 0 评论 -
LBS数据库的架构是怎样的?
作者:Benjamin Ba链接:https://www.zhihu.com/question/19790803/answer/29290524来源:知乎著作权归作者所有,转载请联系作者获得授权。架构的话有很多尝试,传统的Oracle和 Postgre用的比较广泛, 很多架构在此基础上同时应用 NoSQL。因为大多数LBS并不涉及更复杂的空间数据存储,例如多边形或者三维转载 2017-02-16 20:43:04 · 2813 阅读 · 0 评论