
大模型
文章平均质量分 82
javastart
专注于大数据 AI
展开
-
OpenAI官方:针对教师在课堂上如何使用ChatGPT的指南
如果学生遇到困难,鼓励他们,并给他们一些思考的建议。就在这个饱含期待和挑战的时刻,OpenAI犹如一位悄悄而来的魔法师,为教育界带来了一份珍贵的礼物:一份崭新的指南,教导教师如何更高效的使用ChatGPT,以在课堂上加速学生的学习。2、生成的内容可能并不适用于所有的课堂环境,教师才是最了解自己班级的,可以在生成的内容上进行调整、定制,以确保内容对学生有益与课程目标一致。例如,您可以建议通过编写一幕他们选择的电视节目的场景、写一首关于该主题的诗歌,或者编写一篇关于该主题的短篇故事来展示您对概念的理解。转载 2023-09-26 07:41:50 · 13 阅读 · 0 评论 -
价值1000的情感爆文写作prompt,助你写出10万+阅读微信爆文
当然手工写一篇这样的文章并不难,但很耗时,还得收集故事的素材,这样一来写一篇1500字的文章也要1-2个小时,所谓时间就是金钱,每天花一两个小时在这里就是一种浪费。那么能不能利用AI的技术,快速写出一篇文章,再经过一些人工润色就能用呢,带着这个目的,我写出了一个结构化的prompt,五分钟产出一篇质量上乘的情感故事,直接看图。简单分析一下,此类文章的目标对象是中老人,喜欢阅读婆媳关系、两性关系、矛盾类的情感故事,标题党,多数带有转折或隐藏的故事,吸引点进去看全文。还是自媒体夸大其说,吸引流量。原创 2023-09-24 07:13:15 · 49 阅读 · 0 评论 -
GPT+公众号爆文, 一条价值百万的prompt模板!—AI自媒体操盘实操014
公众号爆文有很多方向,比如情感、历史、军事、法律、社保、民生、养老金等等。要是针对每一个细分领域都定制一个prompt,其实也不太现实,而且相关的constrains和skills未必和用户投喂的文章相契合。如果直接输入文章,让ai直接模仿,质量非常不稳定。现在给大家分享一个我最近学习到的prompt模板直接复制就能用。转载 2023-09-23 14:09:54 · 30 阅读 · 0 评论 -
【实测】这些Chat GPT Prompt模版让你的聊天更智能!
今天想和大家分享一些Chat GPT Prompt模版。Chat GPT Prompt是一种基于人工智能的文本生成技术,能够生成自然流畅的对话文本,从而实现智能问答、聊天等应用。在这里,我将为大家介绍一些常用的Chat GPT Prompt模版,希望能够帮助大家更好地利用这项技术。转载 2023-09-23 10:25:53 · 69 阅读 · 0 评论 -
OpenAI ChatGPT API 文档之 Embedding
OpenAI 中的文本 Embedding 衡量文本字符串之间的相关性。原创 2023-09-22 21:36:29 · 379 阅读 · 0 评论 -
从Langchain到ReAct,在大模型时代下全新的应用开发核心
在使用langchain的过程中,大模型给人留下最深刻的印象无疑是Agent功能。大模型会自己分析问题,选择合适的工具,最终解决问题。这个功能背后的原理就是来自ReAct框架。ReAct是Reasoning and Acting(也有一说是Reason Act)缩写,意思是LLM可以根据逻辑推理(Reason),构建完整系列行动(Act),从而达成期望目标。LLM灵感来源是人类行为和推理之间的协同关系。人类根据这种协同关系学习新知识,做出决策,然后执行。原创 2023-09-22 13:10:21 · 99 阅读 · 0 评论 -
prompt 视频收集
1.ChatGPT Prompt提示词工程 *****原创 2023-09-14 18:53:48 · 182 阅读 · 0 评论 -
干货分享丨20个ChatGPT提示词,每周让你多出 20 小时自由时间!
给我一份清单,列出我可以从这些表现最好的人身上学到的最重要的经验教训,以提高我的工作效率。Prompt:“我正在创建一份关于 [插入主题] 的报告。问我一系列问题来测试我的知识。Prompt:“从下面的文字分析写作风格,并写一篇关于 [插入主题] 的 200 字文章指南” [插入你的文字]Prompt:[插入问题]“给我一个解决上述问题的步骤,并清楚地说明如何执行每个步骤。Prompt:“总结[插入作者]的[插入书],并给我列出最重要的学习和见解。Prompt:“重写下面的文字,让初学者容易理解”。转载 2023-09-14 13:33:23 · 40 阅读 · 0 评论 -
chatgpt fine-tuning 官方文档
【代码】chatgpt fine-tuning 官方文档。原创 2023-09-04 10:39:07 · 1755 阅读 · 0 评论 -
卡内基梅隆 && 清华 | Prompt2Model:利用大模型Prompt,实现专有NLP模型生成!
因为Prompt LLM的成本可能会非常的高,模型需要大量的计算或者访问商业API,除此之外,LLM往往比较依赖输入Prompt的质量,这与经过训练的模型相比不稳定。同时,由于NLP研究人员当面不同应用场景时,往往会缺少对应的标注数据来对模型效果进行验证,所以说在实现NLP模型的部署之前,系统效果的调试就存在一定的挑战性。基于以上背景,本文提出了 Prompt2Model,该系统保留了通过Prompt以轻量级方式指定系统行为的能力,同时仍然可以生成可部署的专用模型,保留了其所有优点。转载 2023-09-01 09:38:25 · 70 阅读 · 0 评论 -
从零开始的AGI开发:Gradio入门指南
gr.Interface:gr.Interface模块用于创建简易场景下的应用界面。它是使用Gradio构建交互式应用程序的核心模块之一。通过gr.Interface,您可以快速定义输入和输出函数,并将它们与界面组件进行关联,以创建一个具有交互性的应用程序。这个模块提供了简洁的API和直观的界面,使得构建应用程序变得简单易懂。gr.Blocks:gr.Blocks模块用于定制化场景下的应用界面。它提供了更高级的界面定制和扩展功能,适用于需要更精细控制界面布局和组件交互的情况。转载 2023-08-29 15:15:24 · 99 阅读 · 0 评论 -
大模型LLM-微调经验分享&总结
大型语言模型横行,之前非常焦虑,现在全面拥抱。目前也有很多开源项目进行大模型微调等,笔者也做了一阵子大模型了,特此来介绍一下ChatGLM-6B模型微调经验,并汇总了一下目前开源项目&数据。笔者与很多人微调结论不同,本人在采用单指令上进行模型微调,发现模型微调之后,转载 2023-08-28 17:03:19 · 88 阅读 · 0 评论 -
干货分享丨5个Prompt,教你如何用ChatGPT快速了解一个新行业!
一个行业小白,近乎一张白纸,20多岁,却能在很短的时间,成为某个行业的专家,甚至拿着近100万咨询费,给这个行业的老资格管理者传授经验。OK,现在通过层层递进,我们基本已经能够了解「AI行业」最核心的100个关键词,它们之间的逻辑、从属关系,以及每一个关键词的含义。现在,关键词之间的「从属关系」已经基本完善了,接下来,我们让ChatGPT帮我们分别用1句话,总结每一个关键词的核心含义。在过去,作为一个初学者,尤其是在面对一个未知领域时,想要快速找到100个关键词,可能需要花费大量的时间和精力。转载 2023-08-02 13:12:49 · 96 阅读 · 0 评论 -
RealChar - ️实时创建,自定义和与您的AI角色/同伴交谈(全部在一个代码库中!使用LLM OpenAI GPT3.5 / 4,Anthropic Claude2,Chroma Vec
角色提供动力,包括OpenAI,Anthropic Claude 2,Chroma,Whisper,ElevenLabs等。少一些固执己见,更灵活。开始您的 AI 工程之旅的伟大项目。运行这些命令后,本地开发服务器将启动,默认 Web 浏览器将打开指向此服务器的新选项卡/窗口(通常。:您可以在网络,终端和移动设备上与您的AI角色交谈(是的,我们开源了我们的移动应用程序)自定义:您可以自定义AI角色的个性,背景甚至声音。最新的AI:我们使用最新的AI技术为您的。:实时与您的 AI 角色交谈或发送消息。原创 2023-08-01 09:19:20 · 161 阅读 · 0 评论 -
oobabooga-text-generation-webui可能是最好的语言模型启动器(包含手把手安装教程)
而在大量关注小模型的时候,我注意到国外的小模型发展速度非常快,从RWKV,alpaca,Vicuna,到wizard,stableVicuna,小模型的迭代速度非常的快,几乎每隔几天就有一个新的模型出现,我很希望更多人能够参与到这场变革中来,oobabooga-text-generation-webui就是一个非常好的抓手。oobabooga-text-generation-webui作为语言模型启动器,对于模型的支持范围可以说是最广的,同时高效的模型加载方式,很大程度上满足了我对于大量模型测试的需求。转载 2023-07-30 07:16:27 · 255 阅读 · 0 评论 -
如何使用 Python 快速构建自己的 ChatGPT 聊天机器人
Gradio 是一个用 Python 编写的开源工具。Gradio 为机器学习开发人员提供了一种方便的方式来共享他们的模型。它提供了一个简单、用户友好的 Web 界面,可以随时随地与每个人共享机器学习模型。Gradio 的独特卖点是它不需要开发人员编写 Javascript、HTML 或 CSS 来构建 Web 界面。为了构建 Web 应用程序,你需要熟悉 Gradio 的基本构建块。「Gradio 允许你以两种方式设计 Web 应用程序:Interface 和 Block。转载 2023-07-29 14:08:19 · 293 阅读 · 0 评论 -
oobabooga-text-generation-webui可能是最好的语言模型启动器(包含手把手安装教程)
而在大量关注小模型的时候,我注意到国外的小模型发展速度非常快,从RWKV,alpaca,Vicuna,到wizard,stableVicuna,小模型的迭代速度非常的快,几乎每隔几天就有一个新的模型出现,我很希望更多人能够参与到这场变革中来,oobabooga-text-generation-webui就是一个非常好的抓手。oobabooga-text-generation-webui作为语言模型启动器,对于模型的支持范围可以说是最广的,同时高效的模型加载方式,很大程度上满足了我对于大量模型测试的需求。转载 2023-07-29 10:01:10 · 599 阅读 · 3 评论 -
ChatGPT自定义指令实操分享:3分钟带你玩转 Custom instructions
在实际使用过程中,我们发现,自定义指令(Custom instructions)有3个地方,让 ChatGPT在原本的基础上,它可以说是「超级AI导师」指令的平民版,但是结合 GPT-4的逻辑推理和可视化能力,学习效果甚至不输「超级AI导师」指令。这个自定义内容,结合我们之前分享的「超级面试官V1.0」指令,具体的设定内容(如下图)。这样,ChatGPT之后的每一个回答,就不需要再一次次重复提醒,它都会。两者各有千秋,都给了详细、具体的介绍,以及可视化呈现,整体表现都不错。转载 2023-07-27 21:48:25 · 502 阅读 · 0 评论 -
ChatGPT API进阶调用指南
以上是 ChatGPT API 进阶调用指南。通过设置用户角色、格式化回复、引用先前消息以及使用列表和链接,您可以更好地组织和展示对话内容,从而提供更加丰富和吸引人的对话体验。希望这些指南对您在使用 ChatGPT API 进行对话式应用开发时有所帮助!原创 2023-07-25 14:36:29 · 1293 阅读 · 0 评论 -
LangChain 中文入门教程
LangChain 中文入门教程。原创 2023-07-25 14:08:58 · 130 阅读 · 0 评论 -
7月最新大模型排名!3700道保密试题、20个大模型参与评测|SuperCLUE
选取模型的不完全:我们测试了一部分模型,但还存在着更多的可用中文大模型。选取的能力范围:我们尽可能的全面、综合衡量模型的多维度能力,但是可能有一些模型能力没有在我们的考察范围内。SuperCLUE基准计划按照月度进行更新,会纳入更多可用中文大模型,欢迎大模型研发机构联系与交流,可在下方申请评测。的可用的模型进行测评,以反映国内大模型的发展现状并了解与国际领先模型的差距或相对优劣势。,基于国内大模型研发机构的模型训练进度,模型月考与模型研发节奏保持同步。组成,用于考察大模型在70余个任务上的综合表现。原创 2023-07-25 10:32:08 · 330 阅读 · 0 评论 -
NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比
NVIDIA Tesla V100采用NVIDIA Volta架构,非常适合为要求极为苛刻的双精度计算工作流程提供加速,并且还是从P100升级的理想路径。该GPU的渲染性能比Tesla P100提升了高达80%,借此可缩短设计周期和上市时间。Tesla V100的每个GPU均可提供125 teraflops的推理性能,配有8块Tesla V100的单个服务器可实现1 petaflop的计算性能。正式购买之前,推荐先领取代金券再购买阿里云官方云小站),可帮助我们进一步降低购买成本。转载 2023-07-24 13:45:01 · 2507 阅读 · 0 评论 -
最新国内大模型评估结果
网址:Leaderboard | C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation ModelsResults for different subjects and the average test results are shown below. The results are from either zero-shot or few-shot prompting ---- note that fe转载 2023-07-23 11:03:06 · 84 阅读 · 0 评论 -
Langchain 新手完全指南
模型在高层次上有两种不同类型的模型:语言模型(language models)和文本嵌入模型(text embedding models)。嵌入模型将文本转换为数字数组,然后我们可以将文本视为向量空间。在这个图像中,我们可以看到在一个二维空间中,“man”是“king”,“woman”是“queen”,它们代表不同的事物,但我们可以看到一种模式。这使得语义搜索成为可能,我们可以在向量空间中寻找最相似的文本片段,以满足给定的论点。原创 2023-07-22 16:32:33 · 650 阅读 · 0 评论 -
Llama 2宇宙就实现了大爆炸!还上新了一大波应用,LeCun也疯狂转发表示支持(美国大模型评估结果)。
官网:by: Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Hao Zhang, Jun 22, 2023scalableand。转载 2023-07-21 22:03:56 · 135 阅读 · 0 评论 -
Gradio: 快速构建你的 webApp
如果你了解 web 开发,一定会知道开发一款 webApp 需要涉及很多技术栈:前端:HTML + CSS + JS (可能会涉及不同的 CSS 框架和 JS 框架如 jquery VUE react 等)后端语言:如 python/javaweb 容器:如 flask/tomcat如果你只会 python,又不想重头学习上述技术,你要怎么办?据我所知,有两种解决方案:streamlit 之前我有介绍过,今天要分享的是Gradio。转载 2023-07-21 20:46:12 · 146 阅读 · 0 评论 -
人工智能大语言模型微调技术:SFT 、LoRA 、Freeze 监督微调方法
SFT监督微调时监督微调时,学习率通常会设置得很小常见误区:1.监督微调需要大量的训练时间和数据 2.监督微调将复制源模型的所有参数至目标模型 3.监督微调只需要几十条监督数据即可监督微调常见任务:1.用中文预训练BERT模型完成中文实体识别任务 2.训练语言模型GPT3 3.UIE模型在垂直领域的数据集上微调常见误区:在ImageNet上的预训练的模型再来训练目标检测任务 (则不是)目前,主流的SFT监督方法包括:LoRA、P-tuning v2、Freeze。转载 2023-07-18 08:00:02 · 580 阅读 · 0 评论 -
ChatGPT 50+ 使用案例以及使用指令 Prompt
有多少次你收到一份很长的文件,你需要在几分钟内预览或总结它?如果你有一篇超长的文章,但你只是想得到这篇文章的要点,所有你需要做的就是给它一些指示,如:“用不到200字总结本文: (文章链接)”然后粘贴到该文章的链接。只要几秒钟,它就会扫描出这篇文章的关键点或者关键思想。用同样的方法,你可以总结书籍、电影等。转载 2023-07-15 16:49:05 · 353 阅读 · 0 评论 -
最强AI导师指令:一个Prompt让ChatGPT秒变金牌辅导,从小学生到博士后,让你1天学会1个月的知识!
在这个类比中,销售团队就像足球队的球员,销售目标就像比赛中的得分。{“深度”:0,“学习风格”:[],“沟通风格”:[],“音调风格”:[],“推理框架”:[],“更新率”:“”,“反馈类型”:[]}我的学生的偏好是:深度为6,学习风格为全局,沟通风格为苏格拉底式,语气风格为鼓励,推理框架为类比法。我的学生的偏好是:深度为6,学习风格为全局,沟通风格为苏格拉底式,语气风格为鼓励,推理框架为类比法。我的学生的偏好是:深度为6,学习风格为全局,沟通风格为苏格拉底式,语气风格为鼓励,推理框架为类比法。转载 2023-07-15 16:33:21 · 199 阅读 · 0 评论 -
ChatGPT常用的指令(prompts)系列七-演说家、哲学家、数学老师
你可以谈论任何话题,但目的是确保你所说的话能引起听众的共鸣,激励他们为自己的目标而努力,争取更好的可能性。我将提供一些与哲学研究相关的主题,你的工作将是以易于理解的方式解释这些概念。我的第一个要求是“我需要帮助理解不同的哲学理论如何在日常生活中应用。我想让你扮演哲学家的角色。我将提供一些与哲学研究相关的主题或问题,你的工作将是深入探索这些概念。我的第一个要求是“我需要帮助制定决策的伦理框架。我将提供一些数学方程或概念,你的工作是用易于理解的术语解释它们。我的第一个请求是“我需要帮助理解概率是如何工作的。转载 2023-07-15 15:51:41 · 71 阅读 · 0 评论 -
基于vue3+pinia2仿ChatGPT聊天实例|vite4.x仿chatgpt界面
基于vue3+pinia2仿ChatGPT聊天实例|vite4.x仿chatgpt界面_vue3 聊天_xiaoyan_2018的博客-CSDN博客原创 2023-07-14 15:25:59 · 2149 阅读 · 0 评论 -
大模型训练数据集介绍
在Alpaca模型的原始52K数据的基础上,我们添加了额外的534,530个条目,涵盖英语、简体中文、繁体中文(台湾)、繁体中文(香港)、日语、德语以及各种语言和语法任务。通过使用这些丰富的数据重新训练和优化模型,Guanaco在多语言环境中展现出了出色的性能和潜力 数据集名称:Guanaco。我们收集了23个常见的中文数据集,对于每个任务,由人工书写若干种指令模板,保证数据的高质量与丰富度,数据量为115万。对现在的开源数据集做了相关的整理和汇总,并且加上了自己开源的CoT数据集。转载 2023-07-14 12:56:45 · 365 阅读 · 0 评论 -
EduChat:开源中英教育对话大模型
EduChat:开源中英教育对话大模型。(通用基座模型,GPU部署,数据清理)。转载 2023-07-10 23:31:05 · 201 阅读 · 0 评论 -
LM+Embedding构建问答系统的局限性及优化方案
首当其冲的是:多知识点聚合处理场景下,Embedding-Search召回精度较低的问题。一个仓库有 N 条记录,每个记录有 M 个属性;用户希望对 x 条记录的y 个属性进行查询、对比、统计等处理。# 多知识点——简单查询Q: 皮蓬、英格利什和布兰德的身高、体重各是多少?# 多知识点——筛选过滤Q: 皮蓬、英格利什和布兰德谁的第一位置是 PF?# 多知识点——求最值Q: 皮蓬、英格利什和布兰德谁的金徽章数最多?LLM 的出现,推动下游应用激烈变革,各种探索如火如荼地展开。转载 2023-07-09 17:59:20 · 353 阅读 · 0 评论 -
ChatGPT火出圈,英语老师如何用起来?
当然,这样的计划往往就像一张简单的食谱设计指南,作为一名厨师,可以根据这个食谱提供的思路,设计出实际的食谱。ChaGPT能够提供丰富的解释、方法、资讯、思路,帮助学生更深刻、更富有创意地理解知识,提高学习效率和兴趣,很好地帮助学生实现自主学习和个性化学习,了解自己的学习差距和需求,激励学习和提升自我,这来源于它的以下功能。ChatGPT可以为师生提供一个实时分享的平台,实时回答问题,为课堂活动提供想法、增加课堂趣味性和丰富性,帮助学生理解复杂的内容和概念,成为教师的人工智能助教、课后导师或辩论陪练。转载 2023-07-04 11:25:41 · 357 阅读 · 0 评论 -
Prompt 提示词技巧
方法在prompt 后增加 use temperature of 0.8 或者temperature=0.8。1、gpt 冷静问题,其实就是温度值参数。默认值是0.8,值的范围0-2。原创 2023-07-02 20:01:49 · 189 阅读 · 0 评论 -
中小学教师ChatGPT的23种用法!
随后,我们提出更详细的设计需求:“在暑假进行,为期十天,课程目的是培养孩子们的探究能力、批判性思维能力、协作能力以及博物学相关的知识、测量统计技能等,结合过程性评价和终结性评价,且需要列明时间规划、需要准备的物料、背景资料。靠的是良好的人际关系和协作精神,在关键时能够得到团队的支撑和帮助。比如,一位英语教师希望学习和掌握如何在英语课堂上使用3-2-1促进学生的反思,她就可以询问ChatGPT,ChatGPT可以提供相关的案例、视频、阅读材料、在线课程、工具、平台、软件等,等等供她学习和使用。转载 2023-06-24 17:31:08 · 429 阅读 · 0 评论 -
GPT-3解数学题准确率升至92.5%!无需微调即可打造理科语言模型
近几年,自然语言处理的发展很大程度上要归功于大型语言模型(LLMs)在规模上的不断扩展,其展现出了惊人的zero-shot和few-shot能力,也促成了prompting技术的发展,用户只需要在prompt中给LLM输入几个简单的样例即可对新任务进行预测。上述生成的分析方案为用户提供了关于LLM的「中间思维过程」的提示,加入额外的提示可以提高结果的准确性和一致性,反过来会提高MathPrompter生成更精确和有效的解决方案的能力。验证过程中的中间步骤的正确性可以清楚地了解解决方案背后的思维过程。原创 2023-06-19 13:52:23 · 120 阅读 · 0 评论 -
Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言
在与OpenAI的Whisper进行同类比较时,研究人员发现,在Massively Multilingual Speech数据上训练的模型有将近一半的单词错误率,但Massively Multilingual Speech涵盖的语言是Whisper的11倍。接下来,研究人员使用自己的以及现有的数据集,如FLEURS和CommonVoice,为超过4000种语言训练了一个语言识别(LID)模型,并在FLEURS LID任务上对其进行了评估。令人担忧的是,在我们有生之年,这些语言中有一半都面临着消失的危险。原创 2023-06-15 22:29:00 · 988 阅读 · 0 评论 -
使用OpenAI的Whisper 模型进行语音识别
Whisper模型是在68万小时标记音频数据的数据集上训练的,其中包括11.7万小时96种不同语言的演讲和12.5万小时从”任意语言“到英语的翻译数据。该模型利用了互联网生成的文本,这些文本是由其他自动语音识别系统(ASR)生成而不是人类创建的。该数据集还包括一个在VoxLingua107上训练的语言检测器,这是从YouTube视频中提取的短语音片段的集合,并根据视频标题和描述的语言进行标记,并带有额外的步骤来去除误报。主要采用的结构是编码器-解码器结构。重采样:16000 Hz。原创 2023-06-15 14:23:14 · 1163 阅读 · 0 评论