多传感器融合
文章平均质量分 85
JaydenQ
移动机器人定位与环境建模,服务认知与搜索,环境理解与场景认知。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
VIL-SLAM论文翻译:Stereo Visual Inertial LiDAR Simultaneous Localization and Mapping
文章目录写在前面摘要1.引言2.相关工作3.系统概述4.视觉前端5.双目视觉惯性里程计A. IMU预积分因子B. 非结构化视觉因子C. 优化和边缘化6. 激光建图A. LiDAR扫描去畸变B. 帧到地图配准7. LiDAR增强的闭环A. 回环检测B. 回环约束C. 全局位姿图优化D. 重定位8. 实验结果A.平台和软件B.测试和结果C. EuRoCMAV数据集测试9.结论写在前面写作参考: robot L开源代码: 开源代码链接论文原文: 原文链接摘要SLAM是移动和空中机器人的一项基本任务原创 2021-08-27 16:21:36 · 2133 阅读 · 0 评论 -
多传感器融合的SLAM综述
1.单一传感器SLAM面临的问题单一传感器会面临很多棘手的场景:在纹理少、四季天气变化、光照剧烈变化、车载条件IMU退化、长走廊、机器人剧烈运动等情况下,如下图所示。在这些复杂场景中,原来很好用的单一传感器的SLAM方法在往往会无用,很难发挥出应有的效果,导致建图失败。这些很棘手的场景会给我们带来实际应用中的困惑,采用单一的传感器会面临这个问题,所以多源融合这个领域很热门,被产业界所认可。2.多传感器的融合方案下图选自浙江大学刘勇教授在第二届全国SLAM技术论坛中的报告。从上面多元融合的框架原创 2021-08-21 16:15:35 · 8553 阅读 · 0 评论
分享