LIO-SAM
文章平均质量分 70
JaydenQ
移动机器人定位与环境建模,服务认知与搜索,环境理解与场景认知。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LIO-SAM源码解读:总体架构篇
参考文章链接:知乎 卢涛关于LIO-SAM的论文解读,请查看 论文解读本文旨在对源代码进行阅读学习,这里记录下来,希望可以帮到有需要的同学,如有错误的地方,请您批评指正。目录LIO-SAM源码解读(一):ImageProjectionLIO-SAM源码解读(二):FeatureExtractionLIO-SAM源码解读(三):TransformFusion 和 IMUPreintegrationLIO-SAM源码解读(四):mapOptimization整体流程代码结构图:因子图:原创 2021-09-09 16:15:01 · 13498 阅读 · 1 评论 -
LIO-SAM源码解读(四):mapOptimization
写在前面功能简介:1.scan-to-map匹配:提取当前激光帧特征点(角点、平面点),局部关键帧map的特征点,执行scan-to-map迭代优化,更新当前帧位姿;2.关键帧因子图优化; 关键帧加入因子图,添加激光里程计因子、GPS因子、闭环因子、执行因子图优化,更新所有关键帧的位姿;3.闭环检测:在历史关键帧中找距离相近,时间相隔较远的帧设为匹配帧,匹配帧周围提取局部关键帧地图,同样执行scan-to-map匹配,得到位姿变换,构建闭环因子数据,加入因子图优化。订阅:1.订阅当前激光帧点云信原创 2021-09-09 15:19:06 · 2071 阅读 · 0 评论 -
LIO-SAM源码解读(三):TransformFusion 和 IMUPreintegration
写在前面TransformFusion类功能简介:主要功能是订阅激光里程计(来自MapOptimization)和IMU里程计,根据前一时刻激光里程计,和该时刻到当前时刻的IMU里程计变换增量,计算当前时刻IMU里程计;rviz展示IMU里程计轨迹(局部)。订阅:1、订阅激光里程计,来自MapOptimization;2、订阅imu里程计,来自ImuPreintegration。发布:1、发布IMU里程计,用于rviz展示;2、发布IMU里程计轨迹,仅展示最近一帧激光里程计时刻到当前时刻原创 2021-09-09 11:39:03 · 1471 阅读 · 1 评论 -
LIO-SAM源码解读(二):FeatureExtraction
写在前面FeatureExtraction 点云特征提取功能简介:对经过运动畸变矫正之后的当前帧激光点云,计算每个点的曲率,进而提取角点、平面点(用曲率的大小进行判定)。订阅:1、订阅当前激光帧运动畸变矫正后的点云信息,来自ImageProjection。发布:1.发布当前激光帧提取特征之后的点云信息,包括的历史数据有:运动畸变矫正,点云数据,初始位姿,姿态角,有效点云数据,角点点云,平面点点云等,发布给MapOptimization;2.发布当前激光帧提取的角点点云,用rviz展示;3.原创 2021-09-09 10:41:44 · 969 阅读 · 0 评论 -
LIO-SAM源码解读(一):ImageProjection
写在前面ImageProjection 激光运动畸变校正功能简介:1、利用当前激光帧起止时刻间的imu数据计算旋转增量,IMU里程计数据(来自ImuPreintegration)计算平移增量,进而对该激光帧每一时刻的激光点进行运动畸变矫正(利用相对激光帧起始时刻的位姿增量,变换当前激光点到起始时刻激光点的坐标系下,实现矫正);2、同时利用IMU数据的姿态角(RPY,roll,pitch,yaw)、IMU里程计数据的位姿,对当前帧激光位姿进行粗略初始化。订阅:1、订阅原始的IMU数据;2、订阅原创 2021-09-09 09:34:59 · 1932 阅读 · 0 评论 -
【LIO-SAM论文全文翻译】:LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping
文章目录摘要一、引言二、相关工作三、基于SAM的雷达惯性里程计A.系统概述B. IMU预积分因子C. 雷达里程计因子D. GPS因子总结摘要我们提出一个框架用于通过SAM紧耦合雷达惯性里程计LIO-SAM,可实现高精度、实时的移动机器人轨迹估计和地图构建。LIO-SAM是基于因子图构建雷达惯性里程计,可以将大量的相对测量值、绝对测量值、回环等多种不同数据作为因子融入雷达惯性里程计系统中。通过imu预积分获得的运动估计可以用于点云的偏斜矫正和用于雷达里程计优化的初始值。获得的雷达里程计结果又可以反过来原创 2021-08-25 23:26:52 · 9447 阅读 · 0 评论
分享