【集成学习(中)】My Task07_投票法的原理和案例分析 笔记

投票法的思路

一个零件发送电信号偶尔会出错,但是可以通过重复多次发送数据,以少数服从多数据的方法来确定正确的传输数据,毕竟出错的概率一般比较低
拓展开来:

  • 回归模型: 投票法最终的预测结果,其他回归模型预测结果的平均值
  • 分类模型:
    • 硬投票法的预测结果是频数最多,即多个模型预测中出现次数最多的类别
    • 软投票对各类预测结果的概率进行求和,最终选取概率之和最大的类标签 (这里的各类应该是指多个模型–>得到多个模型对不同类型的预测概率)

投票法的原理分析

投票法是一种遵循少数服从多数原则的集成学习模型,通过多个模型的集成降低方差,从而提高模型的鲁棒性。在理想情况下,投票法的预测效果应当优于任何一个基模型的预测效果。

投票法在回归模型与分类模型上均可使用:

  • 回归投票法:预测结果是所有模型预测结果的平均值。
  • 分类投票法:预测结果是所有模型种出现最多的预测结果。

分类投票法又可以被划分为硬投票与软投票:

  • 硬投票:预测结果是所有投票结果最多出现的类。
  • 软投票:预测结果是所有投票结果中概率加和最大的类。

在投票法中,我们还需要考虑到不同的基模型可能产生的影响。理论上,基模型可以是任何已被训练好的模型。但在实际应用上,想要投票法产生较好的结果,需要满足两个条件:

  • 基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
  • 基模型之间应该有较小的同质性。例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。

当投票合集中使用的模型能预测出清晰的类别标签时,适合使用硬投票。当投票集合中使用的模型能预测类别的概率时,适合使用软投票。软投票同样可以用于那些本身并不预测类成员概率的模型,只要他们可以输出类似于概率的预测分数值(例如支持向量机、k-最近邻和决策树)。

投票法的局限性在于,**它对所有模型的处理是一样的,这意味着所有模型对预测的贡献是一样的。**如果一些模型在某些情况下很好,而在其他情况下很差,这是使用投票法时需要考虑到的一个问题。

投票法的案例分析(基于sklearn,介绍pipe管道的使用以及voting的使用)

Sklearn中提供了 VotingRegressorVotingClassifier 两个投票方法。 这两种模型的操作方式相同,并采用相同的参数。使用模型需要提供一个模型列表,列表中每个模型采用Tuple的结构表示,第一个元素代表名称,第二个元素代表模型,需要保证每个模型必须拥有唯一的名称。

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import VotingClassifier
models = [('lr',LogisticRegression()),('svm',SVC())]
ensemble = VotingClassifier(estimators=models)
  • 有时一些预处理操作,我们可以定义Pipeline完成模型预处理工作:m–
models = [('lr',LogisticRegression()),('svm',make_pipeline(StandardScaler(),SVC()))]
ensemble = VotingClassifier(estimators=models)
  • 模型还提供voting参数让我们选择软投票或者硬投票:
models = [('lr',LogisticRegression()),('svm',SVC())]
ensemble = VotingClassifier(estimators=models,voting='soft')

下面我们使用一个完整的例子演示投票法的使用:
首先我们创建一个1000个样本,20个特征的随机数据集

# test classification dataset
from sklearn.datasets import make_classification
# define dataset
X,y = make_classification(n_samples=1000,n_features=20,n_informative=15,n_redundant=5,random_state=2)
# summarize the dataset
print(X.shape,y.shape)
(1000, 20) (1000,)

我们使用多个KNN模型演示投票法,其中每个模型采用不同的邻居值K参数

from sklearn.neighbors import KNeighborsClassifier # K近邻算法(
from sklearn.ensemble import VotingClassifier # 投票法
# get avoting ensemble of models 
def get_voting():
    # define the base models 
    models = list()
    models.append(('knn1',KNeighborsClassifier(n_neighbors=1)))
    models.append(('knn3',KNeighborsClassifier(n_neighbors=3)))
    models.append(('knn5',KNeighborsClassifier(n_neighbors=5)))
    models.append(('knn7',KNeighborsClassifier(n_neighbors=7)))
    models.append(('knn9',KNeighborsClassifier(n_neighbors=9)))
    # define the voting ensemble
    ensemble = VotingClassifier(estimators=models,voting='hard')
    return ensemble
get_voting()
VotingClassifier(estimators=[('knn1', KNeighborsClassifier(n_neighbors=1)),
                             ('knn3', KNeighborsClassifier(n_neighbors=3)),
                             ('knn5', KNeighborsClassifier()),
                             ('knn7', KNeighborsClassifier(n_neighbors=7)),
                             ('knn9', KNeighborsClassifier(n_neighbors=9))])
  • 然后,我们可以创建一个模型列表来评估投票带来的提升,包括KNN模型配置的每个独立版本和硬投票模型。下面的get_models()函数可以为我们创建模型列表进行评估。
# get a list of models to evaluate
def get_models():
    models = dict()
    models['knn1'] = KNeighborsClassifier(n_neighbors=1)
    models['knn3'] = KNeighborsClassifier(n_neighbors=3)
    models['knn5'] = KNeighborsClassifier(n_neighbors=5)
    models['knn7'] = KNeighborsClassifier(n_neighbors=7)
    models['knn9'] = KNeighborsClassifier(n_neighbors=9)
    models['hard_voting'] = get_voting()
    return models
get_models()
{'knn1': KNeighborsClassifier(n_neighbors=1),
 'knn3': KNeighborsClassifier(n_neighbors=3),
 'knn5': KNeighborsClassifier(),
 'knn7': KNeighborsClassifier(n_neighbors=7),
 'knn9': KNeighborsClassifier(n_neighbors=9),
 'hard_voting': VotingClassifier(estimators=[('knn1', KNeighborsClassifier(n_neighbors=1)),
                              ('knn3', KNeighborsClassifier(n_neighbors=3)),
                              ('knn5', KNeighborsClassifier()),
                              ('knn7', KNeighborsClassifier(n_neighbors=7)),
                              ('knn9', KNeighborsClassifier(n_neighbors=9))])}

下面的evaluate_model()函数接手一个模型实例,并以分层10倍交叉验证三次重复的分数列表的形式返回

from sklearn import datasets
from sklearn.model_selection import RepeatedStratifiedKFold# 交叉验证
from sklearn.model_selection import train_test_split,cross_val_score #划分数据 交叉验证
# evaluate a give model using cross-validation
def evaluate_model(model,X,y):
    cv = RepeatedStratifiedKFold(n_splits=10,n_repeats=3,random_state=1)
    scores = cross_val_score(model,X,y,scoring = 'accuracy',cv=cv,n_jobs = -1,error_score='raise')
    return scores

然后,我们可以报告每个算法的平均性能,还可以创建一个箱形图和须状图来比价每个算法的精度分数分布

from sklearn.neighbors import KNeighborsClassifier
from matplotlib import pyplot
scores
array([0.9 , 0.88, 0.89, 0.87, 0.95, 0.93, 0.95, 0.84, 0.92, 0.9 , 0.91,
       0.95, 0.91, 0.94, 0.93, 0.82, 0.86, 0.93, 0.88, 0.91, 0.9 , 0.9 ,
       0.92, 0.95, 0.85, 0.87, 0.92, 0.91, 0.86, 0.92])
# define dataset
#X, y = get_dataset()
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results, names = list(), list()
for name, model in models.items():
    scores = evaluate_model(model, X, y)
    results.append(scores)
    names.append(name)
    print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
# plot model perfabsormance for comparison
pyplot.boxplot(results, labels=names, showmeans=True)
pyplot.show()
>knn1 0.873 (0.030)
>knn3 0.889 (0.038)
>knn5 0.895 (0.031)
>knn7 0.899 (0.035)
>knn9 0.900 (0.033)
>hard_voting 0.902 (0.034)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IOduXjgs-1618397403867)(output_19_1.png)]

总结

sklearn.model_selection.RepeatedKFold¶的使用
在这里插入图片描述
像上面的例子中
在这里插入图片描述
所以
在这里插入图片描述
这里是因为参数 n_splits,n_repeats的设置,将数据集弄了30份出来,然后结果取平均数,这样的效果会更好,这就是交叉验证说法
在这里插入图片描述

import numpy as np
from sklearn.model_selection import RepeatedKFold
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
y = np.array([0, 0, 1, 1])
rkf = RepeatedKFold(n_splits=4, n_repeats=1, random_state=2652124)
for train_index, test_index in rkf.split(X):
    print("TRAIN:", train_index, "TEST:", test_index)
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]
TRAIN: [0 1 2] TEST: [3]
TRAIN: [0 1 3] TEST: [2]
TRAIN: [1 2 3] TEST: [0]
TRAIN: [0 2 3] TEST: [1]

像上面的n_split=4,n_repeats=1的结果,可以清晰看出所划分后的数据,注意上面输出的是索引
下面看看n_split=4,n_repeats=2的结果
在这里插入图片描述
将n_splits设置大于X数据集的行数时会报错
在这里插入图片描述

最后小总结一下,对上面的将代码改一下,验证一下自己想法,多实践就对了,加深自己的理解,上面的总结纯粹是个人想法,如有误,望指出
参考链接
参考 : GitHub开源集成学习(上) Datawhale

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据闲逛人

谢谢大嘎喔~ 开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值