二维随机变量

什么是二维随机变量?

E E E是一个随机试验,它的样本空间是 S = { e } S=\{e\} S={e},设 X = X ( e ) X=X(e) X=X(e) Y = Y ( e ) Y=Y(e) Y=Y(e)是定义在 S S S上的随机变量

由他们构成的一个向量 ( X , Y ) (X,Y) (X,Y)叫做二维随机向量二维随机变量

二维随机变量的分布函数的定义及性质

  • 定义

( X , Y ) (X,Y) (X,Y)是二维随机变量,对于任意实数 x , y x,y x,y,二元函数:

称为二维随机变量 ( X , Y ) (X,Y) (X,Y)分布函数,或称为随机变量 X X X Y Y Y联合分布函数

  • 性质
  1. F ( x , y ) F(x,y) F(x,y)是变量 x x x y y y的不减函数,即对于任意固定的 y y y,当 x 2 > x 1 x_2>x_1 x2>x1 F ( x 2 , y ) ≥ F ( x 1 , y ) F(x_2,y) \ge F(x_1,y) F(x2,y)F(x1,y),对固定的 x x x同理
  2. 0 ≤ F ( x , y ) ≤ 1 0 \le F(x,y) \le 1 0F(x,y)1 F ( − ∞ , ∞ ) = 0 F(-\infty,\infty) = 0 F(,)=0 F ( ∞ , ∞ ) = 1 F(\infty,\infty) = 1 F(,)=1
  3. 对于任意固定的 y y y F ( − ∞ , y ) = 0 F(-\infty,y)=0 F(,y)=0,对于任意固定的 x x x F ( x , − ∞ ) = 0 F(x,-\infty)=0 F(x,)=0
  4. F ( x + 0 , y ) = F ( x , y ) F(x+0,y)=F(x,y) F(x+0,y)=F(x,y) F ( x , y + 0 ) = F ( x , y ) F(x,y+0)=F(x,y) F(x,y+0)=F(x,y),即 F ( x , y ) F(x,y) F(x,y)关于 x x x y y y右连续
  5. 对于任意的 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y + 2 ) (x_2,y+2) (x2,y+2) x 1 < x 2 x_1 < x_2 x1<x2 y 1 < y 2 y_1 < y_2 y1<y2有: P { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) ≥ 0 \\P\{x_1 < X \le x_2,y_1 < Y \le y_2\} = F(x_2,y_2) - F(x_2,y_1) - F(x_1,y_2) + F(x_1,y_1) \ge 0 P{x1<Xx2,y1<Yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)0

二维离散型随机变量的分布率及性质

  • 定义

设二维随机变量 ( X , Y ) (X,Y) (X,Y)所有可能取的值为 ( x i , y i ) (x_i,y_i) (xi,yi) i , j = 1 , 2 , ⋯ i,j = 1,2,\cdots i,j=1,2,

我们称 P ( X = x i , Y = y i ) = p i j P(X=x_i,Y=y_i) = p_{ij} P(X=xi,Y=yi)=pij i , j = 1 , 2 , . . . i,j=1,2,... i,j=1,2,...,为二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)的分布率

  • 性质

P ( X = x i , Y = y i ) = p i j P(X=x_i,Y=y_i) = p_{ij} P(X=xi,Y=yi)=pij i , j = 1 , 2 , . . . i,j=1,2,... i,j=1,2,...,则由概率的定义有 p i j ≥ 0 p_{ij} \ge 0 pij0 ∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1 i=1j=1pij=1

二维离散型随机变量的分布函数计算公式

设二维随机变量 ( X , Y ) (X,Y) (X,Y)所有可能取的值为 ( x i , y i ) (x_i,y_i) (xi,yi) i , j = 1 , 2 , ⋯ i,j = 1,2,\cdots i,j=1,2,

F ( x , y ) = ∑ i = 1 x ∑ j = 1 y p x y F(x,y) = \sum_{i=1}^{x} \sum_{j=1}^{y} p_{xy} F(x,y)=i=1xj=1ypxy

二维连续型随机变量的概率密度及性质

对于二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数 F ( x , y ) F(x,y) F(x,y)如果存在非负可积函数 f ( x , y ) f(x,y) f(x,y)使得对于任意 x , y x,y x,y

F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y) = \int_{-\infty}^y \int_{-\infty}^x f(u,v) dudv F(x,y)=yxf(u,v)dudv

则称 ( X , Y ) (X,Y) (X,Y)二维连续性随机变量,函数 f ( x , y ) f(x,y) f(x,y)称为二维连续性随机变量 ( X , Y ) (X,Y) (X,Y)概率密度,或称为随机变量 X X X Y Y Y联合概率密度

  • 性质
  1. f ( x , y ) ≥ 0 f(x,y) \ge 0 f(x,y)0
  2. ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = F ( ∞ , ∞ ) = 1 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dxdy = F(\infty,\infty) = 1 f(x,y)dxdy=F(,)=1
  3. G G G x O y xOy xOy平面上的区域,点 ( X , Y ) (X,Y) (X,Y)落在 G G G内的概率为 P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y P\{(X,Y) \in G\} = \iint_G f(x,y)dxdy P{(X,Y)G}=Gf(x,y)dxdy
  4. f ( x , y ) f(x,y) f(x,y)在点 ( x , y ) (x,y) (x,y)连续,则有 ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{\partial^2F(x,y)}{\partial x \partial y} = f(x,y) xy2F(x,y)=f(x,y)

二维连续性随机变量的分布函数计算公式

F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y) = \int_{-\infty}^y \int_{-\infty}^x f(u,v) dudv F(x,y)=yxf(u,v)dudv

如何求连续型随机变量落在区域 G G G内概率 P { ( X , Y ) ∈ G } P\{(X,Y) \in G\} P{(X,Y)G}的公式

P = { ( X , Y ) ∈ G } = ∫ ∫ G ( x , y ) d x d y P= \{(X,Y) \in G\} = \int\int_G(x,y)dxdy P={(X,Y)G}=G(x,y)dxdy

常见的二维分布

均匀分布 f ( x , y ) = { 1 S , ( x , y ) ∈ D 0 , 其 他 f(x,y) = \left\{\begin{aligned}& \frac{1}{S} ,(x,y) \in D \\&0 \qquad ,其他\end{aligned}\right. f(x,y)=S1(x,y)D0,

二维正态分布

在这里插入图片描述

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值