期望

什么是随机变量的数学期望
  1. 离散型

    设离散型随机遍历 X X X的分布率为$P{X=x_i} = p_i , , k=1,2,\cdots$

    若指数 ∑ k − 1 ∞ x k p k \sum^{\infty}_{k-1}x_kp_k k1xkpk绝对收敛,则称级数 ∑ k − 1 ∞ x k p k \sum^{\infty}_{k-1}x_kp_k k1xkpk为随机变量 X X X的数学期望,记为 E ( X ) E(X) E(X)
    E ( X ) = ∑ k − 1 ∞ = x k p k E(X) = \sum^{\infty}_{k-1} = x_kp_k E(X)=k1=xkpk

​ 2.连续型

​ 设连续型随机变量 X X X的概率密度为 f ( x ) f(x) f(x),若积分 ∫ − ∞ + ∞ f ( x ) d x \int^{+\infty}_{-\infty}f(x)dx +f(x)dx绝对收敛

​ 则称 ∫ − ∞ + ∞ f ( x ) d x \int^{+\infty}_{-\infty}f(x)dx +f(x)dx的值为随机变量 X X X的数学期望,记为 E ( X ) E(X) E(X)
E ( X ) = ∫ − ∞ + ∞ f ( x ) d x E(X) = \int^{+\infty}_{-\infty}f(x)dx E(X)=+f(x)dx

请计算出三种离散 型、三种连续型常见分布的期望
  • 两点分布

    • 分布率: P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k} , k=0,1 P(X=k)=pk(1p)1k,k=0,1

    • 期望: E ( X ) = p E(X) = p E(X)=p

    • 方差: D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = p ( 1 − p ) D(X)=E(X^2)-[E(X)]^2 = p(1-p) D(X)=E(X2)[E(X)]2=p(1p)

  • 二项分布

    • 分布率: P ( X = k ) = ( n k ) p k q n − k P(X=k)={n\choose k}p^k q^{n-k} P(X=k)=(kn)pkqnk

    • 期望: E ( X ) = ∑ k = 0 n k ( n k ) p k ( 1 − p ) n − k = n p E(X) = \sum^n_{k=0}k{n\choose k}p^k(1-p)^{n-k} = np E(X)=k=0nk(kn)pk(1p)nk=np

    • E ( X 2 ) = ∑ k = 0 n k 2 ( n k ) p k ( 1 − p ) n − k = n ( n − 1 ) p 2 + n p E(X^2) = \sum^n_{k=0}k^2{n\choose k}p^k(1-p)^{n-k} = n(n-1)p^2 + np E(X2)=k=0nk2(kn)pk(1p)nk=n(n1)p2+np

    • 方差: D ( X ) = n p q D(X) = npq D(X)=npq

  • 泊松分布

    • 分布率: P ( X = k ) = λ k e − λ k ! P(X=k)=\frac{\lambda^k e^{-\lambda }}{k!} P(X=k)=k!λkeλ

    • 期望: E ( X ) = ∑ k = 0 ∞ k λ k e − λ k ! = λ E(X) = \sum_{k=0}^{\infty}k\frac{\lambda^k e^{-\lambda }}{k!} = \lambda E(X)=k=0kk!λkeλ=λ

    • E ( X 2 ) = ∑ k = 0 ∞ k 2 λ k e − λ k ! = λ 2 + λ E(X^2) = \sum_{k=0}^{\infty}k^2 \frac{\lambda^k e^{-\lambda }}{k!} = \lambda^2 + \lambda E(X2)=k=0k2k!λkeλ=λ2+λ

    • 方差: D ( X ) = λ D(X)=\lambda D(X)=λ

  • 几何分布

    • 分布率: P ( x = k ) = ( 1 − p ) k − 1 , p , j = 1 , 2 , … P(x=k)=(1-p)^{k-1},p,j=1,2,\dots P(x=k)=(1p)k1,p,j=1,2,

    • 期望: E ( X ) = ∑ k = 1 ∞ k p ( 1 − p ) k − 1 = 2 − p p 2 E(X) = \sum_{k=1}^{\infty}kp(1-p)^{k-1}=\frac{2-p}{p^2} E(X)=k=1kp(1p)k1=p22p

    • 方差: D ( X ) = q p 2 D(X) = \frac{q}{p^2} D(X)=p2q

  • 均匀分布

    • 分布率: f ( x ) = 1 b − a f(x) = \frac{1}{b-a} f(x)=ba1

    • 期望: E ( X ) = a + b 2 E(X) = \frac{a+b}{2} E(X)=2a+b

    • 方差 D ( X ) = ( b − a ) 2 12 D(X) = \frac{(b-a)^2}{12} D(X)=12(ba)2

  • 正态分布

    • 分布率: f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{- \frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ 1e2σ2(xμ)2 ( − ∞ < x < ∞ , σ > 0 ) (-\infty < x < \infty , \sigma > 0) (<x<,σ>0)

    • 期望: E ( X ) = μ E(X) = \mu E(X)=μ

    • 方差: D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2

  • 指数分布

    • 分布率: f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x) = \left\{\begin{aligned}&\lambda e^{-\lambda x} ,x > 0\\&0 \qquad ,x \le 0\end{aligned}\right. f(x)={λeλxx>00,x0

    • 期望: E ( X ) = 1 λ E(X) = \frac{1}{\lambda} E(X)=λ1

    • 方差: 1 λ 2 \frac{1}{\lambda^2} λ21

随机变量函数的期望计算公式

E ( g ( x ) ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E(g(x)) = \int^{+\infty}_{-\infty}g(x)f(x)dx E(g(x))=+g(x)f(x)dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值