问题
将一个 二叉搜索树 就地转化为一个 已排序的双向循环链表 ;节点的左指针指向前驱(上一个比自己小的节点),右指针指向后驱(下一个比自己大的节点)。
最后要求返回链表中最小元素的指针。
思考
题目的要求贼多:
- 排序:二叉树的中序遍历结果是一个有序的数组,因此,根据这个要求我们可以推出,本题的遍历要用中序遍历;
- 就地:如果没有这个要求,中序遍历了,再构建一个新的树就行了;
- 双向链表:右子树指向大的,左子树指向小的;
- 循环:首尾还得接起来;
- 返回链表中最小元素的指针。
我第一次没有写出来,虽然是中序遍历,但是不知道咋写,后面男票讲了一遍才理解到,这里再码一遍加深理解:
class Solution:
def traverse(self, cur: 'Node') -> 'Node':
if not cur:
return
self.traverse(cur.left)
# 关键代码
if self.pre:
self.pre.right, cur.left = cur, self.pre
else:
self.head = cur
self.pre = cur
self.traverse(cur.right)
return self.head
def treeToDoublyList(self, root: 'Node') -> 'Node':
if not root:
return root
# 为了记录上一个节点,从而连接双向链表
self.pre = None
self.traverse(root)
# 为了形成循环,首尾再接一下
self.head.left, self.pre.right = self.pre, self.head
return self.head
之前知道要中序遍历,代码的结构应该是:
if not root:
return root
traverse(root.left)
???
traverse(root.right)
但是❓部分要怎么写就不知道了,现在总结下,应该去怎么想这种问题。
这是一种递归的写法,最开始进入到return的,一定是最左边的节点,也就是下图的1号节点(因为1号节点的left为空,会首先命中if not root,返回空)。
然后就到了❓的部分,这个时候的root值为1,也是我们想返回的最小节点。怎么把它记录下来呢?通过一个if self.pre是不是空的条件,也就是是不是初始化的状态,是的话记下这个最小节点,留着最后返回。不是的话,说明已经不在1号节点了,这时候的核心任务就是更改双向的指针。
更改指针的时候,假设我们在2号,它的pre应该是1,left和right千万不要搞反了就行。更改完记得更新一下pre的值,因为要进入下一个节点了。
最后一个容易遗漏也容易写错的地方,就是首尾相接的部分。首节点的right已经指向了比它大的,尾节点的left已经指向了比它小的,所以最后连的是self.head.left,self.pre.right !