双线性插值与三线性插值

双线性插值:原图像中4个像素点灰度值计算得到新图像中1个像素点灰度值。(双:两个维度进行计算)

三线性插值:原图像中8个像素点灰度值计算得到新图像中1个像素点灰度值。(三:三个维度进行计算)

双三次插值:原图像中16个像素点灰度值计算得到新图像中1个像素点灰度值。详情请查看此文章

双线性插值

已知Q11(x1,y1)、Q12(x1,y2)、Q21(x2,y1)、Q22(x2,y2),求点P(x,y)的灰度值。

  • 第一步:x方向单线性插值,求点R1的灰度值f(R1)

                                                                   f\left ( R1 \right )=\frac{x_{2}-x}{x_{2}-x_{1}}f\left ( Q11 \right )+\frac{x-x_{1}}{x_{2}-x_{1}}f\left ( Q21 \right )

其中,\frac{x_{2}-x}{x_{2}-x_{1}}\frac{x-x_{1}}{x_{2}-x_{1}}可以看作权重。

  • 第二步:x方向单线性插值,求点R2的灰度值f(R2)。与上述步骤同理。
  • 第三步:根据上述两个步骤得到的f(R1)与f(R2),进行y方向单线性插值,求点P的灰度值f(P)

三线性插值

与双线性插值同样的思路,只是我们推到3d空间:

根据点c000与点c100的灰度值计算得到点a的灰度值,根据点c010与点c110的灰度值计算得到点b的灰度值

根据点c001与点c101的灰度值计算得到点c的灰度值,根据点c011与点c111的灰度值计算得到点d的灰度值

得到了这四个点,再把它代入回双线性插值既可:

 

参考文章:https://zhuanlan.zhihu.com/p/77496615

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明 YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明YOLO高分设计资源源码,详情请查看资源内容中使用说明
好的,我知道了。下面是我对线性插值双线性插值线性插值的简要介绍: 1. 线性插值 线性插值是一种基本的插值方法,它通过已知的两个点来估计中间的值。假设我们要在点 $(x_0, y_0)$ 和 $(x_1, y_1)$ 之间插值,那么对于 $x \in [x_0, x_1]$,可用以下公式计算出 $y$ 的近似值: $$y = y_0 + (y_1 - y_0) \frac{x - x_0}{x_1 - x_0}$$ 2. 双线性插值 双线性插值是一种常用的二维插值方法,它适用于在一个矩形网格上进行插值。假设我们要在四个已知点 $(x_0, y_0)$,$(x_1, y_0)$,$(x_0, y_1)$ 和 $(x_1, y_1)$ 形成的矩形网格上插值,那么对于任意点 $(x,y)$,可用以下公式计算出近似值: $$f(x,y) = f_{00}(1-t)(1-s) + f_{10}t(1-s) + f_{01}(1-t)s + f_{11}ts$$ 其中,$f_{ij}$ 表示 $(x_i, y_i)$ 的函数值,$s$ 和 $t$ 是插值点 $(x,y)$ 在水平和竖直方向上相对于 $(x_0,y_0)$ 的距离比例。具体而言,$s$ 和 $t$ 可以通过以下公式计算: $$s = \frac{x - x_0}{x_1 - x_0},\quad t = \frac{y - y_0}{y_1 - y_0}$$ 3. 线性插值 线性插值是一种常用的维插值方法,它适用于在一个立方体网格上进行插值。假设我们要在八个已知点 $(x_0,y_0,z_0)$,$(x_1,y_0,z_0)$,$(x_0,y_1,z_0)$,$(x_1,y_1,z_0)$,$(x_0,y_0,z_1)$,$(x_1,y_0,z_1)$,$(x_0,y_1,z_1)$ 和 $(x_1,y_1,z_1)$ 形成的立方体网格上插值,那么对于任意点 $(x,y,z)$,可用以下公式计算出近似值: $$f(x,y,z) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{ijk}(1-t_i)(1-s_j)(1-r_k)$$ $$+ \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{i+1,j,k}t_i(1-s_j)(1-r_k) $$ $$+ \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{i,j+1,k}(1-t_i)s_j(1-r_k) $$ $$+ \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{i,j,k+1}(1-t_i)(1-s_j)r_k $$ $$+ \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{i+1,j+1,k}t_is_j(1-r_k) $$ $$+ \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{i+1,j,k+1}t_i(1-s_j)r_k $$ $$+ \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{i,j+1,k+1}(1-t_i)s_jr_k $$ $$+ \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 f_{i+1,j+1,k+1}t_is_jr_k$$ 其中,$f_{ijk}$ 表示 $(x_i,y_j,z_k)$ 的函数值,$s$、$t$ 和 $r$ 是插值点 $(x,y,z)$ 在个方向上相对于 $(x_0,y_0,z_0)$ 的距离比例。具体而言,$s$、$t$ 和 $r$ 可以通过以下公式计算: $$s = \frac{x - x_0}{x_1 - x_0},\quad t = \frac{y - y_0}{y_1 - y_0},\quad r = \frac{z - z_0}{z_1 - z_0}$$ 以上就是种插值方法的简要介绍。希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值