0. 导读 每个学习过线性代数的人,心中一定充满疑问,往往百思难得其解,本书列举一些,并且自然而然地解决了这些问题,

导读

如果你有幸读到这个线性代数系列,恭喜你!你将获得最自然和最本质的解读线性代数的方式。

每个学习过线性代数的人,心中一定充满疑问,往往百思难得其解,本系列列举一些,并且自然而然地解决了这些问题,希望你读完本系列后对这些问题有透彻理解。如果你从零开始学习线性代数,则希望你读到相关章节时带着这些问题仔细阅读。如果读者有时间,建议从头开始按顺序读,如果时间不够,建议认真阅读第一章,然后可以针对各个知识点选读,如遇到不懂的,可以看相关章节。

目标读者为两类,一类是零基础,另一类是学完线性代数之后的读者。所以本科生,研究生,科研工作者都能从本系列受益,甚至高中生都可以阅读本系列,因为读者不需要任何基础就能阅读本系列,只需有简单的矢量知识作为背景知识就能理解本系列。

  1. 线性代数用来解决什么问题的?线性代数以向量和矩阵为工具,解决线性空间中向量的合成与分解问题。

  2. 矩阵是什么?可以多角度观察,是有序向量组,是线性变换,甚至是数值表格。

  3. 矩阵乘法为什么那么定义,初看很变扭,其实很自然?就是向量合成。

  4. A B ≠ B A AB \neq BA AB=BA,矩阵乘法一般情况下为什么不满足交换律,因为它们本来就是两个完全不同的对象。实数乘法满足交换律是个定理,需要证明,a个b的和居然等于b个a的和,多么不可思议!

  5. 矩阵行列式 d e t A det A detA 计算公式为什么那么复杂,这个数值到底代表什么?它其实就是A的列向量组构成的多边形的有向体积。那为什么要定义成体积呢?因为当A的列向量组线性相关(不可逆)时,此多边形的体积为0。

  6. ( A B ) T = B T A T ; ( A B ) − 1 = B − 1 A − 1 (AB)^T=B^TA^T; (AB)^{-1}=B^{-1}A^{-1} (AB)TBTAT;(AB)1B1A1,矩阵转置和逆的公式为什么如此相似?因为方程 A x = b A\mathbf {x}=\mathbf{b} Ax=b 的解空间为 A T u A^T\mathbf{u} ATu,与解 A − 1 b A^{-1}\mathbf{b} A1b 形式相似。正交矩阵的转置等于逆: Q T = Q − 1 Q^T=Q^{-1} QT=Q1

  7. 为什么只有方阵才可能有逆,方阵的列向量组线性无关时为什么可逆呢?因为此时方阵是个一一映射的变换。

  8. 矩阵有逆,其实还有左逆、右逆和伪逆,你知道吗?它们对应矩阵行列均满秩,列满秩、行满秩和列行均不满秩,它们分别用于求唯一解、最优近似解、范数最小解和最优近似解中范数最小的解(伪逆解)。

  9. A x = b A\mathbf {x}=\mathbf{b} Ax=b 对任意矩阵 A A A 存在通解公式吗?伪逆解 + + 零解!

  10. 矩阵的秩能用一句大白话让小学生深刻理解吗?秩就是方程 A x = 0 A\mathbf {x}=\mathbf{0} Ax=0 独立方程的数量。

  11. 向量组线性无关为什么如此重要,因为它保证方程 A x = b A\mathbf {x}=\mathbf{b} Ax=b 是单射。

  12. 矩阵 A m n A_{mn} Amn 的四个子空间:零空间 { x : A x = 0 } \{\mathbf{x}:A\mathbf{x}=\mathbf{0}\} {x:Ax=0} 和行空间 { A T u } \{A^T\mathbf{u}\} {ATu},它们是 R n R^n Rn 空间中的正交互补子空间;左零空间 { x : A T x = 0 } \{\mathbf{x}:A^T\mathbf{x}=\mathbf{0}\} {x:ATx=0} 和列空间 { A v } \{A\mathbf{v}\} {Av} ,它们是 R m R^m Rm 空间中的正交互补子空间。它们是方程 A x = b A\mathbf {x}=\mathbf{b} Ax=b 的核心概念!零空间 { x : A x = 0 } \{\mathbf{x}:A\mathbf{x}=\mathbf{0}\} {x:Ax=0} 就是零解;行空间和列空间的维度相等,等于矩阵秩,这两个子空间构成一一映射,变换矩阵分别为 A m n A_{mn} Amn 和伪逆 A n m + A^+_{nm} Anm+ ;左零空间 { x : A T x = 0 } \{\mathbf{x}:A^T\mathbf{x}=\mathbf{0}\} {x:ATx=0} 不能被列空间 { A v } \{A\mathbf{v}\} {Av} 表示。如果没有理解这四个子空间,就不可能深刻理解方程 A x = b A\mathbf {x}=\mathbf{b} Ax=b

  13. 注意到矩阵 A T A A^TA ATA A A T AA^T AAT 的重要性吗?它们对计算左逆、右逆和伪逆极其重要,四个矩阵 A T A A^TA ATA A A T AA^T AAT A T A^T AT A A A 秩均相同。

  14. 对称矩阵的谱定理 S = Q Λ Q T S=Q\Lambda Q^T S=QΛQT 和任意矩阵的奇异值分解 A = U Σ V T A=U\Sigma V^T A=UΣVT ,它们之间的内在联系你知道吗?

  15. 矩阵分解的目的是什么?如 S n = Q Λ Q T S_n=Q\Lambda Q^T Sn=QΛQT A m n = U Σ V T A_{mn}=U\Sigma V^T Amn=UΣVT A n = X Λ X − 1 A_n=X\Lambda X^{-1} An=XΛX1 A n = L D U A_n=LD U An=LDU A m n = Q R A_{mn}=QR Amn=QR A n = X J X − 1 A_n=XJ X^{-1} An=XJX1 A n = Q R Q T A_n=QR Q^T An=QRQT ,是为了各个分量尽可能解耦和简化方程 A x = b A\mathbf {x}=\mathbf{b} Ax=b 求解。由于矩阵的性质不同,故有各种分解形式。

  16. 你会证明奇异值分解 A = U Σ V T A=U\Sigma V^T A=UΣVT 定理吗?

  17. 奇异值分解的应用你真正掌握了吗?数据压缩(矩阵低秩最优近似)、数据降维(PCA)、总体最小二乘法(TLS)、数据高度相关时如何拟合(伪逆或岭回归)。

  18. 矩阵特征值数值不稳定,而奇异值稳定,知道原因吗?

  19. 如何计算高阶矩阵的特征值?解方程吗,可是4阶以上方程无代数解啊!

  20. 矩阵 Q R QR QR 分解对解方程的重要性。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值