4.2 矩阵分解概念

4.2 矩阵分解概念

对任意可逆方阵 A A A ,如果能保证解不变,将其变换为上三角阵,则就能方便求得方程解。如何保证解不变呢?

重要性质 对任意可逆矩阵 P P P,方程 A x = b A\mathbf{x}=\mathbf{b} Ax=b 和方程 P A x = P b PA\mathbf{x}=P\mathbf{b} PAx=Pb 有相同解。

该性质是解方程的理论基础。证明很简单:假设 x \mathbf{x} x 是方程 A x = b A\mathbf{x}=\mathbf{b} Ax=b 的解,则方程两边左乘矩阵 P P P ,即 x \mathbf{x} x 是方程 P A x = P b PA\mathbf{x}=P\mathbf{b} PAx=Pb 的解;假设 x \mathbf{x} x 是方程 P A x = P b PA\mathbf{x}=P\mathbf{b} PAx=Pb 的解,则方程两边左乘逆矩阵 P − 1 P^{-1} P1 ,即 x \mathbf{x} x 是方程 A x = b A\mathbf{x}=\mathbf{b} Ax=b 的解。

对任意可逆矩阵 A A A ,如果选择合适的可逆矩阵 P P P,使 P A = U PA=U PA=U 成立,则方程解为
P A x = P b , U x = P b x = U − 1 P b PA\mathbf{x} = P\mathbf{b}, U\mathbf{x}=P\mathbf{b}\\ \mathbf{x}=U^{-1}P\mathbf{b} PAx=Pb,Ux=Pbx=U1Pb

P A = U PA=U PA=U A = P − 1 U A=P^{-1}U A=P1U 称为矩阵分解,即矩阵分解为两个矩阵的乘积,类似实数的素数分解。

定义 矩阵分解 矩阵分解为若干个”简单“矩阵的乘积,一般是2到3个。简单矩阵一般是,对角阵,正交阵,三角阵等。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值