7.4.2 解的稳定性、病态矩阵、矩阵条件数

7.4.2 解的稳定性、病态矩阵、矩阵条件数

根据通解
x = x p + x z = b 1 U / σ 1 v 1 + ⋯ + b r U / σ r v r + ( k 1 v r + 1 + ⋯ + k n − r v n ) b i U = u i T b 为 在 坐 标 系 U 下 的 坐 标 分 量 , k i 是 任 意 实 数 \mathbf{x} = \mathbf{x}_p + \mathbf{x}_z = b^U_1/\sigma_1\mathbf{v}_1 + \cdots + b^U_r/\sigma_r\mathbf{v}_r + (k_1\mathbf{v}_{r+1} + \cdots + k_{n-r}\mathbf{v}_n)\\b^U_i = \mathbf{u}^T_i\mathbf{b}为在坐标系 U 下的坐标分量,k_i是任意实数 x=xp+xz=b1U/σ1v1++brU/σrvr+(k1vr+1++knrvn)biU=uiTbU,ki

如果 b \mathbf{b} b 由于测量误差或计算舍入误差变为 b + Δ b \mathbf{b}+\Delta\mathbf{b} b+Δb ,则解也会变为 x + Δ x \mathbf{x} + \Delta\mathbf{x} x+Δx ,由于零解 k i k_i ki 是任意实数,所以如果考虑零解,则 Δ x \Delta\mathbf{x} Δx 由于零解的改变可任意改变,变得毫无意义。所以只考虑特解 x p \mathbf{x}_p xp 的改变量 Δ x p \Delta\mathbf{x}_p Δxp

Δ x p = δ b 1 U / σ 1 v 1 + ⋯ + δ b r U / σ r v r \Delta\mathbf{x}_p = \delta b^U_1/\sigma_1\mathbf{v}_1 + \cdots + \delta b^U_r/\sigma_r\mathbf{v}_r Δxp=δb1U/σ1v1++δbrU/σrvr

因为 σ 1 ≥ σ 2 ≥ ⋯ ≥ σ r > 0 \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0 σ1σ2σr>0 ,所以当 Δ x p \Delta\mathbf{x}_p Δxp 全部由分量 δ b r U \delta b^U_r δbrU 造成的即 Δ b = ∥ Δ b ∥ u r \Delta\mathbf{b} = \|\Delta\mathbf{b}\|\mathbf{u}_r Δb=Δbur ,则特解改变量最大,故

m a x Δ x p = δ b r U / σ r v r = u r T Δ b / σ r v r = ∥ Δ b ∥ / σ r v r max \Delta\mathbf{x}_p = \delta b^U_r/\sigma_r\mathbf{v}_r = \mathbf{u}^T_r\Delta\mathbf{b}/\sigma_r\mathbf{v}_r = \|\Delta\mathbf{b}\|/\sigma_r\mathbf{v}_r maxΔxp=δbrU/σrvr=urTΔb/σrvr=Δb/σrvr

这是特解最大绝对改变量,与最小奇异值成反比。更有意义的是特解相对改变量大小,根据特解 x p = b 1 U / σ 1 v 1 + ⋯ + b r U / σ r v r \mathbf{x}_p = b^U_1/\sigma_1\mathbf{v}_1 + \cdots + b^U_r/\sigma_r\mathbf{v}_r xp=b1U/σ1v1++brU/σrvr b = ∥ b ∥ u 1 \mathbf{b} = \|\mathbf{b}\|\mathbf{u}_1 b=bu1 ,特解最小

m i n x p = b 1 U / σ 1 v 1 = u 1 T b / σ 1 v 1 = ∥ b ∥ / σ 1 v 1 min \mathbf{x}_p = b^U_1/\sigma_1\mathbf{v}_1 = \mathbf{u}^T_1\mathbf{b}/\sigma_1\mathbf{v}_1 = \|\mathbf{b}\|/\sigma_1\mathbf{v}_1 minxp=b1U/σ1v1=u1Tb/σ1v1=b/σ1v1

所以特解最大相对改变量为

m a x ∥ Δ x p ∥ ∥ x p ∥ = ∥ Δ b ∥ / σ r ∥ b ∥ / σ 1 = σ 1 σ r ∥ Δ b ∥ ∥ b ∥ max \frac{\|\Delta\mathbf{x}_p\|}{\|\mathbf{x}_p\|} = \frac {\|\Delta\mathbf{b}\|/\sigma_r}{\|\mathbf{b}\|/\sigma_1} = \frac {\sigma_1}{\sigma_r} \frac {\|\Delta\mathbf{b}\|}{\|\mathbf{b}\|} maxxpΔxp=b/σ1Δb/σr=σrσ1bΔb

得到如下结论:
1、特解最大相对改变量与 σ 1 σ r ≥ 1 \frac {\sigma_1}{\sigma_r} \ge 1 σrσ11 成正比且大于 ∥ Δ b ∥ ∥ b ∥ \frac {\|\Delta\mathbf{b}\|}{\|\mathbf{b}\|} bΔb,即会放大误差。
2、取等号条件为: b = ∥ b ∥ u 1 \mathbf{b} = \|\mathbf{b}\|\mathbf{u}_1 b=bu1 Δ b = ∥ Δ b ∥ u r \Delta\mathbf{b} = \|\Delta\mathbf{b}\|\mathbf{u}_r Δb=Δbur
3、所有奇异值 σ i = σ \sigma_i=\sigma σi=σ 均相等时,有 m a x ∥ Δ x p ∥ x p ∥ = ∥ Δ b ∥ ∥ b ∥ max \frac{\|\Delta\mathbf{x}_p\|}{\mathbf{x}_p\|} = \frac {\|\Delta\mathbf{b}\|}{\|\mathbf{b}\|} maxxpΔxp=bΔb 任何情况下都不会放大误差,特解最稳定。此时 A = U Σ V T = σ U E r ′ V T A = U \Sigma V^T = \sigma U E'_r V^T A=UΣVT=σUErVT ,例如 A = σ Q A = \sigma Q A=σQ Q Q Q 为正交矩阵,方程解最稳定。

为此定义如下概念

矩阵条件数 矩阵最大奇异值和最小奇异值之比,记为 c o n d A = σ 1 σ r cond A = \frac {\sigma_1}{\sigma_r} condA=σrσ1

病态矩阵 矩阵条件数远大于 1 1 1 的矩阵,病态矩阵容易因为误差而导致解的不稳定。

矩阵条件数具有如下性质: c o n d A = c o n d A T = c o n d A + cond A = cond A^T = cond A^{+} condA=condAT=condA+ c o n d A T A = c o n d A A T = ( c o n d A ) 2 cond A^TA = cond AA^T = (cond A)^2 condATA=condAAT=(condA)2

同理可得特解最小相对改变量为

m i n ∥ Δ x p ∥ x p ∥ = 1 c o n d A ∥ Δ b ∥ ∥ b ∥ min \frac{\|\Delta\mathbf{x}_p\|}{\mathbf{x}_p\|} = \frac {1}{cond A} \frac {\|\Delta\mathbf{b}\|}{\|\mathbf{b}\|} minxpΔxp=condA1bΔb

等号条件 b = ∥ b ∥ u r \mathbf{b} = \|\mathbf{b}\|\mathbf{u}_r b=bur Δ b = ∥ Δ b ∥ u 1 \Delta\mathbf{b} = \|\Delta\mathbf{b}\|\mathbf{u}_1 Δb=Δbu1

病态矩阵很容易导致特解不稳定,但这只是必要条件不是充分条件,比如特解最小相对改变量小于 1 1 1 缩小了误差,与矩阵条件数成反比,条件数越大特解反而越稳定。所以不是病态矩阵都能导致特解不稳定,要看 b , Δ b \mathbf{b},\Delta\mathbf{b} b,Δb 在坐标系 U U U 中的位置

如果 A A A 由于测量误差或计算舍入误差变为 A + Δ A A+\Delta A A+ΔA ,则解也会变为 x + Δ x \mathbf{x} + \Delta\mathbf{x} x+Δx ,此时有 ( A + Δ A ) ( x + Δ x ) = b (A+\Delta A)(\mathbf{x} + \Delta\mathbf{x})=\mathbf{b} (A+ΔA)(x+Δx)=b 减去 A x = b A\mathbf{x} = \mathbf{b} Ax=b A Δ x = − Δ A ( x + Δ x ) A\Delta\mathbf{x} = -\Delta A(\mathbf{x} + \Delta\mathbf{x}) AΔx=ΔA(x+Δx) 假设矩阵 A A A 可逆,两边左乘 A − 1 A^{-1} A1 取范数得
∥ Δ x ∥ = ∥ A − 1 Δ A ( x + Δ x ) ∥ ≤ ∥ A − 1 ∥ ∥ Δ A ∥ ∥ x + Δ x ∥ 即 ∥ Δ x ∥ ∥ x + Δ x ∥ ≤ ∥ A ∥ ∥ A − 1 ∥ ∥ Δ A ∥ ∥ A ∥ 因 为 ∥ A ∥ ∥ A − 1 ∥ = σ 1 σ r = c o n d A 所 以 ∥ Δ x ∥ ∥ x + Δ x ∥ ≤ c o n d A ∥ Δ A ∥ ∥ A ∥ \|\Delta\mathbf{x}\| = \|A^{-1}\Delta A(\mathbf{x} + \Delta\mathbf{x})\| \le \|A^{-1}\| \|\Delta A\| \|\mathbf{x} + \Delta\mathbf{x}\| \\ \\即 \frac{\|\Delta\mathbf{x}\|}{\|\mathbf{x} + \Delta\mathbf{x}\|} \le \|A\| \|A^{-1}\| \frac{\|\Delta A\|}{\|A\|} \\因为 \|A\| \|A^{-1}\| = \frac {\sigma_1}{\sigma_r} = cond A \\ \\所以 \frac{\|\Delta\mathbf{x}\|}{\|\mathbf{x} + \Delta\mathbf{x}\|} \le cond A \frac{\|\Delta A\|}{\|A\|} Δx=A1ΔA(x+Δx)A1ΔAx+Δxx+ΔxΔxAA1AΔAAA1=σrσ1=condAx+ΔxΔxcondAAΔA

得到类似结论,即病态矩阵很容易导致特解不稳定。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【有限差分初学者必备】如何根据问题的特点将定区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何此代方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确能否任意逼近微分方程的,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值 ,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似才可能任意逼近差分方程的精确。关于差分格式的构造一般有以下3种方法。最常用的方法是值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系法构造一些精度较高的差分格式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值