兜兜有糖_DC
码龄8年
关注
提问 私信
  • 博客:131,703
    131,703
    总访问量
  • 34
    原创
  • 1,645,719
    排名
  • 225
    粉丝
  • 5
    铁粉

个人简介:南京航空航天大学飞行控制系

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2016-07-19
博客简介:

DC

博客描述:
普普通通,却又不甘平平淡淡
查看详细资料
个人成就
  • 获得105次点赞
  • 内容获得34次评论
  • 获得753次收藏
创作历程
  • 12篇
    2021年
  • 22篇
    2020年
成就勋章
TA的专栏
  • hexo博客
    1篇
  • SLAM
    7篇
  • c++
    3篇
  • 创新创业
    5篇
  • 位姿测量
    12篇
  • 神经网络
    5篇
  • 无人机
    8篇
  • macos
    3篇
  • 好书推荐
  • 智能控制
    2篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理pytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

C++自己实现一个String类(腾讯阿里面试题目)

最近在各种笔试和面试中反复被毒打,有些东西还是要自己去完整的去写,才能理解其底层的实现逻辑,才能安全有效的利用其结构。#include <cstring>#include <iostream>using namespace std;class String {public: // 默认构造函数 String(const char* str = nullptr); // 拷贝构造函数 String(const S
原创
发布博客 2021.04.02 ·
395 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

拼多多创始人黄峥:我的创业人生与人生理解

拼多多—黄峥:为什么再次创业?❶ 我喜欢当前的事和团队,再次创业能让我自己更幸福或者说更快乐。❷ 自己还有一些野心,还有一些能力和能量没有释放,隐约觉得当前的机会有可能让自己做出一个影响面更大,自己成就感更强的事。如何评价团队?  我跟我团队打的比方是说,人生是个过程,然后呢,我们就好象农民工进上海打工,我一开始水平差,我就搬砖头,到后来洗碗,洗碗过了之后做厨师,厨师做好了之后就开饭店,我们的过程是这样的,并不意味着说我之前的事情跟现在没有关系。  甚至有一天我开了餐厅之后,我回过头去,我也会
原创
发布博客 2021.03.23 ·
1752 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

相机噪声与深度感知的方法梳理

图像传感器技术:硅材料传感器对红色和绿色这两种颜色通常很敏感,但对蓝色却不敏感;相机硬件噪声来源于光电传感器、A/D转化器;计算成像学:–高动态范围的 --高速帧率 --三维深度图 --焦平面再聚焦 --焦点扫描 --滚动快门 --全景拼接 --图像光照重置深度感知的几种方法:1.视差与混合视差;两个相机(立体、多视图立体和阵列照相机)位置之间的FOV上测量位移;2.尺度图:特殊尺寸的颜色标签确定范围和位置;3.聚焦的深度:带扫描聚焦的多帧图像;4.有差别的放大率:使用不同的放大率采集两帧图
原创
发布博客 2021.03.20 ·
518 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

矩阵奇异性和“病态”问题的解释与改善方法(简单易懂)

文章目录矩阵奇异性、‘病态’问题描述:常用改善条件数的方法:关于条件数和正则化的概念补充:矩阵奇异性、‘病态’问题描述:  在实际工程应用中,求解线性方程组 AX=BAX=BAX=B 问题时,其系数矩阵 AAA 或初值矩阵 BBB 一般由实验数据构成,如果矩阵A或B中的元素存在观测误差、仪器的测量误差或计算机本身的误差等,则会导致求得解 XSX_SXS​ 偏离真实解 XrX_rXr​ 。  矩阵条件数反映了矩阵计算中解 XXX 对初值 BBB 的敏感度,矩阵条件数越大,解对初始值的变化越敏感,条件数
原创
发布博客 2021.03.20 ·
9336 阅读 ·
5 点赞 ·
0 评论 ·
27 收藏

视觉SLAM的前段后端最详细的梳理(硕士入门知识框架更新)

文章目录视觉SLAM的组成结构视觉里程计(VO)-特征点法 -构建稀疏点云地图-直接法 -构建稠密或半稠密的地图 --需要使用 RGB-D 传感器视觉里程计--总结:SLAM 后端研究滤波器法非线性优化后端方式的差异(有五种优化方式):单目视觉里程计的初始化:运动估计:半直接法运动估计的优化方案:关于解决累计误差的一些方法:关键帧的建图及后端优化:特征的深度估计:图优化的后端研究:视觉与IMU融合的分类:视觉与IMU的融合的优势:存在的问题:优秀的开源:视觉SLAM的组成结构视觉里程计(VO)-特
原创
发布博客 2021.03.20 ·
5806 阅读 ·
7 点赞 ·
0 评论 ·
104 收藏

2021的行情下如何能够赚到自己认知范围内的钱?一些投资需要补充的内容

文章目录关于投资公司的价值链模型:读懂公司财报资产负债表利润表现金流量表关于投资  投资的真正奥义并非赚取收益,毕竟只要还在这张牌桌上,就都是浮盈,乐观/坚韧/理性/终生学习,在投资路上获得正反馈,是我们变成一个更好的人之后自然的结果。  投资是一件反人性的事。把自己和自我意识解耦这件事本身就充满吸引力。自我是一顶帽子,只不过我们现在不戴上它,我们摘下来审视和讨论它。  股票的涨跌短期是和货币的流动性强关联,长期是和经济发展的趋势强关联;  做好的价值投资坚持者,不做短期交易的价格投机者;公司的
原创
发布博客 2021.02.28 ·
558 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

如何快速看懂一家公司,判断出公司的价值?投资和创业的必备基础知识

最近很多小伙伴们在股票和基金的舞台上与庄家博弈,菜狗、坤坤、医药女神兰姐,市场的火热程度把股市这个危机四伏的市场伪装成了稳赚不赔的买卖,误把股市和基金当作提款机,其实却成了庄家镰刀下的嫩韭菜。如果想凭借自己的知识在股市或基金赚到钱,高瓴资本坚守的价值投资是我们更应该学习的,不做短线的投机者,做价值的坚守者,那么判断一家公司的价值就显得尤为重要。如何快速看懂一家公司目录如何快速看懂一家公司第一:清晰的宏观视野第二:判断行业发展规模第三:判断行业所处阶段第四:行业竞争格局第五:认清公司的商业模式第六:找到护
原创
发布博客 2021.02.04 ·
1027 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络入门概念和框架理解(YOLOv1v2v3改进分析)

神经网络的主要内容:1.激励函数 2.损失函数 3.常见的损失函数典型方法举例——梯度下降法 热门深度学习框架:TensorFlow(google)​Pytorch(facebook)​ 百度飞桨 目标检测框架:YOLO YOLO v1 YOLO v2 YOLO V3与RCNN的不同Mask RCNN
原创
发布博客 2021.01.28 ·
929 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

针对视觉位姿估计特征点优化问题的详细研究

文章目录前言主要因素:仿真结论:特征标志点规划布局设计:标志点规划布局的约束条件:当前的一些研究成功和结论:基于立体视觉的运动刚体位姿测量方法研究一种单目视觉位姿测量系统的误差分析方法基于点特征的位姿测量系统鲁棒性分析横滚角对P3P位姿测量方法鲁棒性的影响分析合作目标姿态对视觉位姿测量精度的影响分析P3P位姿测量方法的误差前言  本文主要针对PNP问题在工程使用的时候,如何布置合作特征的位置进行了一定的研究,探讨了合作特征的位置和尺寸对位姿估计精度的影响。主要因素:  (1)标志器与相机的相对距离
原创
发布博客 2021.01.10 ·
1384 阅读 ·
1 点赞 ·
2 评论 ·
8 收藏

多目标进化优化(MOEA)方法

在生活中的优化问题,往往不只有一个优化目标,并且往往无法同时满足所有的目标都最优。例如工人的工资与企业的利润。多目标进化优化算法即利用进化算法结合多目标优化策略来求解多目标优化问题。经典而久经不衰的多目标优化算法有:NSGA2、NSGA3、MOEA/D等。其中NSGA2和NSGA3是基于支配的MOEA(Multi-objective evolutionary algorithm),而MOEA/D是基于分解的MOEA。
原创
发布博客 2021.01.10 ·
5104 阅读 ·
3 点赞 ·
1 评论 ·
24 收藏

大恒水星相机 linux 下使用qt和opencv开发快读入门手册-例程.zip

发布资源 2021.01.09 ·
zip

如何做一个科研人.zip

发布资源 2021.01.09 ·
zip

理想CEO李想在2020年的一些分享演讲

理想CEO—李想:投资成功的企业和人,在最关键的时候都能看清本质的选择,和个人的性格没有关系,马斯克不是一个脾气好的人,他在最关键的时候做的选择却是对的,这是他坚守的第一性原理;
原创
发布博客 2021.01.09 ·
1055 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Nonlinear-Fitting-with-Levenberg-Marquardt-Method.zip

发布资源 2021.01.09 ·
zip

Image_Measurement_Vanishing_Points-master.zip

发布资源 2021.01.07 ·
zip

ZhengyouZhang-Camera-Calibration-master.zip

发布资源 2021.01.07 ·
zip

BleDemo.zip

发布资源 2021.01.07 ·
zip

Markdown首行缩进解决方法实例

文章目录前言一、首行缩进转换成HTML后就没有了?二、首行缩进方法1.方法一:手动添加html可以识别的空格2.方法二:使用脚本的方式对单个文件批量替换前言  通过Markdown写的文章转换成HTML后首行没有缩进2格,即使在Typora中显示有缩进(自己多敲了几个空格或者Tap键),这种原因是Markdown对中文的支持不全导致的。提示:以下是本篇文章正文内容,下面案例可供参考一、首行缩进转换成HTML后就没有了?在Typora中显示是这样的:但是在网页上显示就变成了:二、首行缩.
原创
发布博客 2021.01.02 ·
1483 阅读 ·
1 点赞 ·
2 评论 ·
3 收藏

求解两个经纬点之间的距离和角度(mm级精度)

Distances and bearings between points on an ellipsoidal-model earthVincenty 对椭球体地球模型上点之间距离的解精确到0.5 mm距离,0.000015〃度。基于球面地球模型的计算,例如(更简单的)哈弗斯线,精确到0.3%左右。  We can use live examples at Vincenty’s solution 在线计算  You can git the Matlab Version at git@gi
原创
发布博客 2020.12.22 ·
1077 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

三维坐标系之间的转换关系详解与推导

三维坐标系之间的转换关系:R(旋转矩阵) 、T(平移矩阵);布尔莎模型:前提是旋转角为微小旋转角;适用于大转角的罗德里格矩阵模型;
原创
发布博客 2020.12.21 ·
20066 阅读 ·
14 点赞 ·
6 评论 ·
88 收藏
加载更多