7.4.10 白化 whitening

7.4.10 白化 whitening

回顾PCA, Y = U T A Y = U^TA Y=UTA 即对数据矩阵 A A A 进行旋转变换 U T U^T UT 得到主成分 Y Y Y ,矩阵 Y Y Y 的每列数据为每个学生新成绩向量。所以 PCA 算法本质上是对数据点云进行旋转变换,变换后数据矩阵的协方差矩阵为对角阵 Σ 2 \Sigma^2 Σ2 ,即各个主成分无相关性。因为 A A T = U Σ 2 U T AA^T = U\Sigma^2 U^T AAT=UΣ2UT U U U 是协方差矩阵 A A T AA^T AAT 的特征向量组, Σ 2 \Sigma^2 Σ2 是特征值对角阵。

变换后数据矩阵 Y Y Y 线性无关,每个分量的方差为 σ i 2 \sigma^2_i σi2 。我们还可以进一步变换 Z = Σ − 1 Y = Σ − 1 U T A Z=\Sigma^{-1}Y=\Sigma^{-1}U^TA Z=Σ1Y=Σ1UTA,使其每个分量的方差为 1 1 1
Z T Z = Y T Σ − T Σ − 1 Y = Y T Σ − T Σ − 1 Y = A T U Σ − T Σ − 1 U T A = ( V Σ T U T ) U Σ − T Σ − 1 U T ( U Σ V T ) = E Z^TZ = Y^T\Sigma^{-T}\Sigma^{-1}Y = Y^T\Sigma^{-T}\Sigma^{-1}Y \\ = A^TU\Sigma^{-T}\Sigma^{-1}U^TA \\ = (V\Sigma^TU^T) U\Sigma^{-T}\Sigma^{-1}U^T (U\Sigma V^T) \\ = E ZTZ=YTΣTΣ1Y=YTΣTΣ1Y=ATUΣTΣ1UTA=(VΣTUT)UΣTΣ1UT(UΣVT)=E

数据矩阵 Z Z Z 的协方差矩阵为单位阵 E E E ,即每个分量均值为 0 0 0,方差为 1 1 1,每个分量从均值和方差角度看都是一样的,这时称其为白化数据矩阵。由于白化 Z = Σ − 1 Y Z=\Sigma^{-1}Y Z=Σ1Y,需要除以奇异值,当奇异值趋近 0 0 0 时,白化分量会趋于无穷大,造成数值不稳定,而且奇异值趋近 0 0 0 的分量基本都是噪声引起的,故一般只对奇异值较大的主成分进行白化。

白化数据矩阵有个重要性质,即任意正交矩阵 Q Q Q ,变换数据矩阵 X = Q Z X=QZ X=QZ ,有 X T X = Z T Q T Q Z = Z T E Z = E X^TX = Z^TQ^TQZ = Z^TEZ = E XTX=ZTQTQZ=ZTEZ=E ,数据矩阵 X X X 也是白化数据矩阵,即白化后的数据矩阵任意旋转操作后还是白化数据矩阵,在旋转操作下具有不变性。当正交矩阵取 U U U 时,此时 Z = U Σ − 1 U T A = W A Z = U\Sigma^{-1}U^TA = WA Z=UΣ1UTA=WA 称为 ZCA 白化。白化变换矩阵 W = U Σ − 1 U T W=U\Sigma^{-1}U^T W=UΣ1UT 有个重要性质
W W A A T = ( U Σ − 1 U T U Σ − 1 U T ) ( U Σ 2 U T ) = E WWAA^T = (U\Sigma^{-1}U^TU\Sigma^{-1}U^T)(U\Sigma^2 U^T) = E WWAAT=(UΣ1UTUΣ1UT)(UΣ2UT)=E

W W WW WW A A T AA^T AAT 的逆矩阵, W W W A A T AA^T AAT 的逆矩阵的平方根矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值