分类模型评判指标-混淆矩阵

混淆矩阵是评判模结果的指标,属于模型评估的一部分。只适用于分类模型,判断分类器的性能。比如分类树,逻辑回归。

以二分类为例,判断样本结果是positive以及negative。

一级指标:

TN TP FN FP

混淆矩阵如下:

在这里插入图片描述
ps:图中P和N 是指预测值

二级指标:

在这里插入图片描述

三级指标

在这里插入图片描述
其中P指精确率,R指召回率
F1-Score指标综合R和P,取值范围从0-1,1代表模型输出最好,0代表最差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值