混淆矩阵是评判模结果的指标,属于模型评估的一部分。只适用于分类模型,判断分类器的性能。比如分类树,逻辑回归。 以二分类为例,判断样本结果是positive以及negative。 一级指标: TN TP FN FP 混淆矩阵如下: ps:图中P和N 是指预测值 二级指标: 三级指标 其中P指精确率,R指召回率 F1-Score指标综合R和P,取值范围从0-1,1代表模型输出最好,0代表最差