摊还算法——贡献转移

本文介绍了两种使用贡献转移思想解决动态规划问题的实例。在LeetCode5874问题中,通过哈希表记录数字贡献并进行转移来计算数组分割方式。而在CF1603C问题中,通过枚举子数组的结尾并计算贡献,更新动态规划状态。文章详细展示了如何应用这些技巧求解问题,并给出了完整的代码实现。
摘要由CSDN通过智能技术生成

贡献转移

在计算每个元素的作用的时候,我们可以通过反向枚举作用效果,添加到作用元素的身上,这种方法叫做贡献转移。更正式的说,设 a i a_i ai为每个元素的作用数,集合 B B B为作用效果,那么:

a i = ∑ b ∈ B , b → a i 1 a_i = \sum_{b \in B,b \to a_i} 1 ai=bB,bai1

例题

LeetCode 5874

考虑每一个位置的 pivot ,如果 i i i位置能够成为 pivot 的话,那么前后肯定存在一个位置 j j j,将位置 j j j变成 k k k之后,该位置的 pivot 成立,那么我们称 j j j位置对 i i i位置有一个贡献,此时我们可以用哈希表去记录 j j j位置的数字,然后在遍历中进行贡献转移即可。

class Solution
{
public:
    int waysToPartition(vector<int> &nums, int k)
    {
        long long lsum = 0;
        long long rsum = accumulate(nums.begin(), nums.end(), 0ll);
        unordered_map<long long, int> mp;
        vector<int> contrib(nums.size());
        int undo = 0;
        for (int i = 0; i < nums.size(); i++)
        {
            contrib[i] += mp[nums[i]];
            if (i != nums.size() - 1)
            {
                lsum += nums[i];
                rsum -= nums[i];
                if (rsum == lsum)
                {
                    undo++;
                }
                mp[rsum - lsum + k]++;
            }
        }
        mp.clear();
        lsum = accumulate(nums.begin(), nums.end(), 0ll);
        rsum = 0;
        for (int i = nums.size() - 1; i >= 0; i--)
        {
            contrib[i] += mp[nums[i]];
            if (i != 0)
            {
                lsum -= nums[i];
                rsum += nums[i];
                mp[lsum - rsum + k]++;
            }
        }
        for (int i = 0; i < nums.size(); i++)
        {
            undo = max(undo, contrib[i]);
        }

        return undo;
    }
};

CF 1603C

我们可以枚举以 x x x结尾,前驱为 a i + 1 a_i + 1 ai+1 ⌈ a i a i + 1 ⌉ − 1 \lceil \frac{a_i}{a_i + 1} \rceil - 1 ai+1ai1贡献。设 d p [ i ] [ x ] dp[i][x] dp[i][x]表示为子数组 a [ i : j ] a[i:j] a[i:j]最终以 x x x结尾的子数组的数量,那么前面有 i i i个开头的子数组会得到这个贡献。即为 i ∗ d p [ i ] [ x ] ∗ ( ⌈ a i x ⌉ − 1 ) i * dp[i][x] * (\lceil \frac{a_i}{x} \rceil - 1) idp[i][x](xai1)


int arr[100005];
int dp[2][100005];
vector<int> hold[2];
void solve()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
        scanf("%d", arr + i);
    ll ans = 0;
    hold[0].clear();
    hold[1].clear();
    for (int i = n; i >= 1; i--)
    {
        dp[i & 1][arr[i]]++;
        hold[i & 1].push_back(arr[i]);
        int las = arr[i];
        for (int x : hold[(i + 1) & 1])
        {
            int pos = arr[i] / ((arr[i] + x - 1) / x);
            ll cnt = dp[(i + 1) & 1][x];
            dp[i & 1][pos] += cnt;
            if (pos != las)
            {
                hold[i & 1].push_back(pos);
                las = pos;
            }
            ans = (ans + (i * ((cnt * (((arr[i] + x - 1) / x) - 1)) % MOD353)) % MOD353) % MOD353;
        }
        for (int k : hold[(i + 1) & 1])
            dp[(i + 1) & 1][k] = 0;
        hold[(i + 1) & 1].clear();
    }

    for (int k : hold[0])
        dp[0][k] = 0;
    for (int k : hold[1])
        dp[1][k] = 0;
    cout << ans << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值