What is deep learning and why is it getting somuch attention?
深度学习的定义及其备受关注的原因
作者:Kunal Jain(印度籍)
来源:https://www.analyticsvidhya.com/
什么是深度学习?
深度学习可能是当前机器学习领域中的最热门的研究主题之一,并且相对于很多相近的机器学习算法,它展现出了重大的改进及超越。深度学习被归入无监督学习算法中的一种,并且通过使用多层神经网络以实现卓越的输出结果。以下是一个来自于AnalyticStore’s blog的简单示意图:
大量的像素点作为输入提供给神经网络,神经网络对于这些输入数据进行学习和演化,从而能够识别出更高级的特征,例如人脸、猫等。
以下的一些成就推动了公众对于该领域的关注:
1)在众多的Kaggle竞赛中,展现出惊艳的准确度——狗vs猫图像识别(98.9%的准确度),拯救鲸鱼问题(98%的准确度)。
2)在没有任何监督的情况下,能够学习和识别YouTube视频中的猫图像。
以下是一些事件,向人们暗示了深度学习领域的发展前景:
1)谷歌收购Deepmind公司。
2)谷歌雇用Jeff Hinton(该领域的前沿领袖,你可以在Coursera上找到其关于神经网络的课程)。
3)Facebook雇用Yann LeCun(Jeff Hinton的学生)领导其AI实验室。
4)百度雇用Andrew Ng(该领域的另一个先驱人物),亦是Coursera课程平台的创始人之一。
深度学习的应用
深度学习主要应用于以下领域:
1)图像识别(如标记图像中的人脸)
2)声音识别(如语音识别,Siri)
3)模式检测(如手写笔迹识别)
但是,毕竟神经网络已经出现几十年了,又是什么重新引起了当今的研究兴趣呢?
没错,神经网络确实出现很久了。神经网络的研究高潮是在二十世纪八九十年代,然后,因为其自身的固有问题和黑盒子一样的方法途径,其消声灭迹了很长一段时间。
导致研究重新兴起的最重要的原因就是,计算开销的下降。在谷歌实验室,针对YouTube视频的猫图像分类器(非监督学习)得以实现,借助于16000计算机配置!即使以当今的标准衡量,这些算法配置的消耗也是很大的。
深度学习资源
如果你对该领域比较感兴趣,以下是一些较好的学习资源:
2)Neuralnetwork course on Coursera
4)Yann LeCun overview ofDeep Learning with Marc’Aurelio Ranzato