PyTorch深度学习(23)Transformer及网络结构ViT

43 篇文章 17 订阅
34 篇文章 7 订阅

Transformer

一、Transformer

1、简介

创新、模型效果
通用的模块 注意力机制
应用领域:cv nlp 信号处理
视觉、文本、语音、信号
核心: 提特征的方法  提的更好

应用NLP的文本任务

  • nlp word2vec 词向量
  • 每个词都是一个向量
  • 不同的语境中一个词的含义不同  

2、Attention 注意力机制

权重控制

语言:感兴趣的
图像:指定需要关注

(1)self-attention

作用:同样的词,语境不同,含义不同  

基于权重项,重构特征  
重构:计算与其他词之间的关系,对每个向量做重构  
输入向量——重构——输出重构完的向量  

attention帮助提取特征,包括局部特征

self-attention与attention的区别:

  • self-attention:我自己的词,和自己上下文进行计算
  • attention:与其他词进行计算

(2)Transformer细节

Input  Embedding  Queries  Keys  Values

以NLP中为例:

x1、x2为embeding得到的结果
由x1与x1、x2之间的关系
x1 询问——Queries q1
问自己——回答k1——q1k1算内积
x2 别人问我,给的答案 key2——q1k2
每个词都会问其他词与自己之间的关系  

x2问x1——q2k1

内积越大,关系越紧密,值越大;垂直 内积为0  

初始化权重参数矩阵,分别进行迭代优化,最终输出最好的值  
q、k、v是由训练得到——通过权重获得

  • q 要去查询  
  • k 等着被查  
  • v 实际的特征信息  

数值越大,特征越重要  
dk向量维度——排除掉维度对结果的影响
softmax归一化 0~1

(3)multi-header 多头注意力机制

每个词与其他词的关系由模型来定
同一个词,不同模型,关系结果不同
特征拼接
很多个特征,所有特征拼接在一起
再通过全连接层——降维


x1   q11   k11  q21  k21
x2   q12   k12  q22  k22

问题:先算后算q1k2,都无所谓
解决:需要加上序号

位置信息表达:对每个词加上单独的表达,位置编码

3、图像任务Transformer

NLp最火论文: Attention is all your need

视觉中的Attention:只关注主体

multi-head self attention 多头自注意力机制--类似于Group Convolution

  • 将值拆分
  • concat连接

文本——分词——每个词——上下文间关系
图像——分块embedding(固定大小分块)——确定区域——按顺序排列组合
第一块 与 第一块 到 N块的关系,最后叠加
Transformer——特征提取器

第一次卷积,卷积核区域很小,非常小特征
第二次,在前面的小块基础上
获取的特征区域逐渐变大,慢慢变全局
深度——感受野非常大
CNN——感受野
CNN问题:要获得全局视野需要很多层
Transformer与CNN相比的优势:

  1. 第一层:即考虑自己,又考虑全局
  2. 不需要堆叠,直接可以获得全局信息
  3. Transformer需要训练数据到位(预训练模型、训练改进)

二、ViT网络

1、Vision Transformer(ViT) 2020 CVPR

Transformer动图: 

 

ViT/16流程

  1. 16个patchEmbedding层(Linear Projection of Flattened Patches)
  2. Token(向量,加上posiiton enbedding)
  3. Transformer Encoder(重复堆叠L次)
  4. MLP Head
  5. 得到分类结果
  • Linear Projection of Flattened Patches(Embedding层)
  • Transformer Encoder
  • MLP Head(最终用于分类的层结构)

Embedding层:要求输入token(向量)序列,二维矩阵[num_token, token_dim]

2、实现步骤

通过一个卷积层来实现,以ViTB/16为例

  • 使用卷积核为16×16,stride为16,卷积核个数为768  [224, 224, 3] → [14, 14, 768] → 展平 → [198, 768]
  • 需要加上[class]token及Position Embedding,都是可训练参数
    • 拼接[class]token: Cat{[1, 768], [196, 768]} → [197, 768]
    • 叠加Position Embedding:[197, 768] → [197, 768]
    • 位置编码相似度——余弦相似度
  • Layer:Transformer Encoder中重复堆叠Encoder Block的次数
  • Hidden Size:Embedding层后每个token的dim(向量的长度)
  • MLP Size:Transformer Encoder中MLP Block第一个全连接的节点个数(是Hidden Size的四倍)
  • Heads:Transformer中Multi-Head Attention的heads数
    • Params:参数个数
  • Hybrid:传统卷积网络提取提取特征 ResNet StdConv2d;所有BatchNorm层替换成GroupNorm层;stage4中3个block移至stage3中

网络参数

ModelPatch SizeLayersHidden Size DMLP sizeHeadsParams
ViT-Base16×161276830721286M
Vit-Large16×16241024409616307M
ViT-Huge14×14321280512016632M

3、混合模型——R50-ViTB16

 

 4、网络代码

"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
from collections import OrderedDict

import torch
import torch.nn as nn

# 使用时,需要下载.pth预训练模型,先学习
# 因为需要在非常大的训练集中训练,才会有很好的效果

def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


# Patch Embedding
class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])  # (14, 14)
        self.num_patches = self.grid_size[0] * self.grid_size[1]  # 14×14=196

        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        # nn.Identity() 建立一个输入层,什么都不做
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."

        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x


class Attention(nn.Module):
    def __init__(self,
                 dim,  # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x):
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x.shape

        # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Mlp(nn.Module):
    """
    MLP as used in Vision Transformer, MLP-Mixer and related networks
    """

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_ratio=0.,
                 attn_drop_ratio=0.,
                 drop_path_ratio=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super(Block, self).__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                              attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class VisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
                 qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
                 attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
                 act_layer=None):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_c (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer  Encoder Block的个数  L=12
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set  pre-logits全连接层的节点个数
            distilled (bool): model includes a distillation token and head as in DeiT models
            drop_ratio (float): dropout rate
            attn_drop_ratio (float): attention dropout rate
            drop_path_ratio (float): stochastic depth rate
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
        """
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_tokens = 2 if distilled else 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches
        # 1-batch 1 768
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
        # num_patches 14×14 num_tokens 1
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)

        # 构建等差序列(递增序列) 0~drop_path_ratio depth个元素
        dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay rule
        # transformer encoder中encoder block
        self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                  drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
                  norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)

        # Representation layer
        if representation_size and not distilled:
            self.has_logits = True
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ("fc", nn.Linear(embed_dim, representation_size)),
                ("act", nn.Tanh())
            ]))
        else:
            self.has_logits = False
            self.pre_logits = nn.Identity()

        # Classifier head(s)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
        self.head_dist = None
        if distilled:
            self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()

        # Weight init 权重初始化
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        if self.dist_token is not None:
            nn.init.trunc_normal_(self.dist_token, std=0.02)

        nn.init.trunc_normal_(self.cls_token, std=0.02)
        self.apply(_init_vit_weights)

    def forward_features(self, x):
        # [B, C, H, W] -> [B, num_patches, embed_dim]
        # patch embedding
        x = self.patch_embed(x)  # [B, 196, 768]
        # [1, 1, 768] -> [B, 1, 768]  复制batch_size份

        # Class token 1×768 与 196×768拼接 --> 197×768
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)
        if self.dist_token is None:
            x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]  在196维度concat,拼接后为197
        else:
            x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)

        # Position Embedding 197×768
        x = self.pos_drop(x + self.pos_embed)

        # Transformer Encoder  Encoder Block L(×12)
        x = self.blocks(x)

        # Layer Norm 197×768
        x = self.norm(x)
        if self.dist_token is None:
            return self.pre_logits(x[:, 0])  # 取第一个维度batch所有数据,取第二个维度索引为0的数据
        else:
            return x[:, 0], x[:, 1]

    def forward(self, x):
        x = self.forward_features(x)
        if self.head_dist is not None:
            x, x_dist = self.head(x[0]), self.head_dist(x[1])
            if self.training and not torch.jit.is_scripting():
                # during inference, return the average of both classifier predictions
                return x, x_dist
            else:
                return (x + x_dist) / 2
        else:
            # 对应最后Linear 全连接层
            x = self.head(x)
        return x


def _init_vit_weights(m):
    """
    ViT weight initialization
    :param m: module
    """
    if isinstance(m, nn.Linear):
        nn.init.trunc_normal_(m.weight, std=.01)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out")
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.LayerNorm):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)


def vit_base_patch16_224(num_classes: int = 1000):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA  密码: eu9f
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=None,
                              num_classes=num_classes)
    return model


# num_classes 对应ImageNet-21K的类别个数为21843
def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=768,    # 对应Hidden size
                              depth=12,         # Layers
                              num_heads=12,
                              representation_size=768 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_base_patch32_224(num_classes: int = 1000):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg  密码: s5hl
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=None,
                              num_classes=num_classes)
    return model


def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=768 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_large_patch16_224(num_classes: int = 1000):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ  密码: qqt8
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=None,
                              num_classes=num_classes)
    return model


def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=1024 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=1024 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: converted weights not currently available, too large for github release hosting.
    """
    model = VisionTransformer(img_size=224,
                              patch_size=14,
                              embed_dim=1280,
                              depth=32,
                              num_heads=16,
                              representation_size=1280 if has_logits else None,
                              num_classes=num_classes)
    return model

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer Encoder的改进网络结构可以从以下两个方面进行改进: 1. 基于ViT的改进:ViT(Vision Transformer)是一种基于Transformer的图像识别模型,通过将图像分块并使用Transformer Encoder来提取特征。可以借鉴ViT的思想,将其应用于文本领域,即将文本分块并使用Transformer Encoder来提取特征。这种改进可以通过将文本分块、确定区域并按顺序排列组合,以获取更全局的上下文信息,并在深度方面增加感受野,从而提高特征提取的效果。 2. 基于BERT的改进:BERT(Bidirectional Encoder Representations from Transformers)是一种双向编码器表示的语言模型。可以通过在Transformer Encoder中引入BERT的思想,即同时考虑上下文的双向信息,来改进网络结构。这种改进可以通过在编码器中引入mask、embedding和scaled等机制,从而更好地捕捉文本的上下文信息。 综上所述,可以基于ViT和BERT的思想,分别从分块、区域确定、顺序排列组合和双向编码器等方面对Transformer Encoder进行改进,以提高网络结构的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【NLP Learning】Transformer Encoder续集之网络结构源码解读](https://blog.csdn.net/weixin_43427721/article/details/127897138)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [PyTorch深度学习23Transformer网络结构ViT](https://blog.csdn.net/jiangyangll/article/details/123928439)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [BERT:预训练的深度双向 Transformer 语言模型](https://download.csdn.net/download/caoyuanbin/11149452)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值