python 深度学习实战_75个有关神经网络建模、强化学习与迁移学习的解决方案

python 深度学习实战_75个有关神经网络建模、强化学习与迁移学习的解决方案

第一章程序

学习python 深度学习实战_75个有关神经网络建模、强化学习与迁移学习的解决方案中,在这里贴出书中的例程

page 8

// An highlighted block
import tensorflow as tf
import numpy as np
x_input = np.array([[1,2,3,4,5]]) # 提供了一个虚拟数据集
y_input = np.array([[10]])
x = tf.placeholder(tf.float32,[None,5])# 创建一个占位符
y = tf.placeholder(tf.float32,[None,1])
W = tf.Variable(tf.zeros([5,1]))# 使用一些变量对占位符进行操作
b = tf.Variable(tf.zeros([1]))
y_pred = tf.matmul(x,W)+b
loss = tf.reduce_sum(tf.pow((y - y_pred),2))  # 定义一个损失函数
train = tf.train.GradientDescentOptimizer(0.0001).minimize(loss) # 指定优化器和想要最小化的变量
init = tf.global_variables_initializer() # 初始化所有变量,创建一个名为init的变量
sess = tf.Session()  #创建一个回话,病运行10个周期训练数据
sess.run(init)
for i in range(10):
    feed_dict = {
   x:x_input, y:y_input}
    #sess.run(train, feed_dict = feed_dict)
    _, loss_value = sess.run([train,loss], feed_dict = feed_dict)
    print(loss_value)

输出结果:

// An highlighted block
100.0
97.77255
95.594696
93.46538
91.38347
89.34794
87.357765
85.41191
83.5094
81.64925

page 11

// An highlighted block
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
x_input = np.array([[1,2,3,4,5]]) # 提供一个虚拟数据集
y_input =  np.array([[10]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值