第一章程序
学习python 深度学习实战_75个有关神经网络建模、强化学习与迁移学习的解决方案中,在这里贴出书中的例程
page 8
// An highlighted block
import tensorflow as tf
import numpy as np
x_input = np.array([[1,2,3,4,5]]) # 提供了一个虚拟数据集
y_input = np.array([[10]])
x = tf.placeholder(tf.float32,[None,5])# 创建一个占位符
y = tf.placeholder(tf.float32,[None,1])
W = tf.Variable(tf.zeros([5,1]))# 使用一些变量对占位符进行操作
b = tf.Variable(tf.zeros([1]))
y_pred = tf.matmul(x,W)+b
loss = tf.reduce_sum(tf.pow((y - y_pred),2)) # 定义一个损失函数
train = tf.train.GradientDescentOptimizer(0.0001).minimize(loss) # 指定优化器和想要最小化的变量
init = tf.global_variables_initializer() # 初始化所有变量,创建一个名为init的变量
sess = tf.Session() #创建一个回话,病运行10个周期训练数据
sess.run(init)
for i in range(10):
feed_dict = {
x:x_input, y:y_input}
#sess.run(train, feed_dict = feed_dict)
_, loss_value = sess.run([train,loss], feed_dict = feed_dict)
print(loss_value)
输出结果:
// An highlighted block
100.0
97.77255
95.594696
93.46538
91.38347
89.34794
87.357765
85.41191
83.5094
81.64925
page 11
// An highlighted block
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
x_input = np.array([[1,2,3,4,5]]) # 提供一个虚拟数据集
y_input = np.array([[10]])