SAE J1939协议读取车辆故障码

本文介绍了如何利用SAE J1939协议读取和解析车辆的故障码,包括单个、无和多个故障码的情况。通过发送特定请求并解读响应,可以获取和理解车辆的当前激活故障信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于SAE J1939协议的车辆,默认开启数据广播。当有故障码时,也会按照故障码的格式进行广播。
此处基于外设主动:读取故障码个数->读取故障码->故障码解析 这个步骤来讲,如果被动接收故障码广播,如下解析也适用。

根据故障码个数分如下几种情况:
一、单个故障码时

读取故障码个数:
请求:18EA00F9 CE FE 00
响应:18FECE00 01 00 09 02 05 05 05 05
根据SAE J1939-73协议,解析响应如下:
在这里插入图片描述

01:当前激活故障码个数为1;
00:历史故障码个数为0;
09:符合EOBD、OBD和OBD II;
后面几个字节表明系统支持及状态。

有1个当前激活的故障码,下面去读取这个故障码
请求:18EA00F9 CA FE 00
响应:18FECA00 10 FF B8 04 03 0A FF FF
根据SAE J1939-73协议,解析响应如下:
在这里插入图片描述

10:亮红色停车灯;
FF࿱
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值