MDS降维

MDS降维

多维标度分析(multidimensional scaling ,MDS)

保持原始空间样本之间的距离和低维空间中的距离相等。这是MDS降维方法的前提和条件,但是在实际的应用中,在本文后面的分析中会发现,我们并不会使样本之间距离在降维前后保持百分之百不变,而是使得降维前后样本距离大致一致。

非常传统的降维的方法,以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小


欧氏距离(直线的距离)


原理就是,找到一个观察方向(或一个面使得样本在低维的距离(样本之间的距离)与样本在原始空间的距离(样本之间的距离)最接近)


[url]https://www.cnblogs.com/tanjuntao/p/8067748.html[/url](数据降维之MDS算法)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jie310600

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值