MDS降维
多维标度分析(multidimensional scaling ,MDS)
保持原始空间样本之间的距离和低维空间中的距离相等。这是MDS降维方法的前提和条件,但是在实际的应用中,在本文后面的分析中会发现,我们并不会使样本之间距离在降维前后保持百分之百不变,而是使得降维前后样本距离大致一致。
非常传统的降维的方法,以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小
欧氏距离(直线的距离)
原理就是,找到一个观察方向(或一个面使得样本在低维的距离(样本之间的距离)与样本在原始空间的距离(样本之间的距离)最接近)
[url]https://www.cnblogs.com/tanjuntao/p/8067748.html[/url](数据降维之MDS算法)
多维标度分析(multidimensional scaling ,MDS)
保持原始空间样本之间的距离和低维空间中的距离相等。这是MDS降维方法的前提和条件,但是在实际的应用中,在本文后面的分析中会发现,我们并不会使样本之间距离在降维前后保持百分之百不变,而是使得降维前后样本距离大致一致。
非常传统的降维的方法,以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小
欧氏距离(直线的距离)
原理就是,找到一个观察方向(或一个面使得样本在低维的距离(样本之间的距离)与样本在原始空间的距离(样本之间的距离)最接近)
[url]https://www.cnblogs.com/tanjuntao/p/8067748.html[/url](数据降维之MDS算法)