MDS是线性降维的一种方法,全称是多维尺度变换算法。该算法以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小。它解决的问题是:当n个对象之间的相似性给定,确定这些对象在低维空间中的表示,并使其尽可能与原先的相似性大致匹配。
1.MDS算法推导
step1:
给定N个实例,每个实例是一个(1*m)维向量,计算出m维空间中距离矩阵D,D是一个(N*N)矩阵,第i行j列表示第i个实例与第j个实例之间的距离。假设我们把数据降维到d维空间Z,Zi表示第i个实例
step2:
定义内积矩阵B
step3:
为了使新空间与原空间保持相对位置关系