特征工程之降维(MDS)

MDS是一种线性降维方法,旨在保持数据点间的相对距离。算法包括计算距离矩阵、定义内积矩阵、特征值分解等步骤,用于将高维数据映射到低维空间。文章介绍了MDS的推导过程及其实现方法,包括手动实现和使用sklearn库。
摘要由CSDN通过智能技术生成

MDS是线性降维的一种方法,全称是多维尺度变换算法。该算法以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小。它解决的问题是:当n个对象之间的相似性给定,确定这些对象在低维空间中的表示,并使其尽可能与原先的相似性大致匹配。

1.MDS算法推导

step1:

给定N个实例,每个实例是一个(1*m)维向量,计算出m维空间中距离矩阵D,D是一个(N*N)矩阵,第i行j列表示第i个实例与第j个实例之间的距离。假设我们把数据降维到d维空间Z,Zi表示第i个实例

step2:

定义内积矩阵B

step3:

为了使新空间与原空间保持相对位置关系࿰

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值