import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 由于训练数据存在相差较大的,因此使用min/max尺度变换对训练数据进行归一化
# 注意只对训练数据进行归一化,为了防止有些信息从训练数据泄露到的测试数据
from sklearn.preprocessing import MinMaxScaler
flight_data = pd.read_csv(r"C:\Users\Administrator\Desktop\填补缺失值.csv")
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 15
fig_size[1] = 5
plt.rcParams["figure.figsize"] = fig_size
plt.title('power vs day')
plt.ylabel('power')
plt.xlabel('day')
plt.grid(True)
plt.autoscale(axis='x',tight=True)
plt.plot(flight_data['power'])
plt.show()
#提取数据
all_data = flight_data['power'].values.astype(float)
print(all_data)
#将数据区分为训练数据和测试数据
test_data_size = 960
train_data = all_data[:-test_data_size]
test_data = all_data[-test_data_size:]
# 由于训练数据存在相差较大的,因此使用min/max尺度变换对训练数据进行归一化
# 注意只对训练数据进行归一化,为了防止有些信息从训练数据泄露到的
pytorch搭建LSTM神经网络预测电力负荷
最新推荐文章于 2025-03-26 18:30:00 发布