深度学习及CNN、RNN、GAN等神经网络简介(图文解释 超详细)

深度学习概述

理论上来说,参数越多的模型复杂度越高、容量越大,这意味着它能完成更复杂的学习任务。但一般情形下,复杂模型的训练效率低,易陷入过拟合。随着云计算、大数据时代的到来,计算能力的大幅提高可以缓解训练的低效性,训练数据的大幅增加可以降低过拟合风险。因此,以深度学习(Deep Learning,DL)为代表的复杂模型受到了关注

深度学习是机器学习(Machine Learning,ML)领域中一个新的研究方向。它使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法

(1)基于卷积运算的神经网络系统,即卷积神经网络(Convolutional Neural Network,CNN)

(2)基于多层神经元的自编码神经网络,包括自编码(Auto Encoder)以及近年来受到广泛关注的稀疏编码两类(Sparse Coding)

(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)

通过多层处理,逐渐将底层的特征表示转化为高层特征表示,用简单模型即可完成复杂的分类等学习任务,由此可将深度学习理解为进行特征学习或表示学习。

以往在机器学习用于现实任务时,描述样本的特征通常需要人类专家设计,称为特征工程,众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好的特征也并非易事࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值