【数据分析与可视化】Scipy中的优化、数据拟合及稀疏矩阵处理(超详细 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、Scipy中的优化

SciPy.optimize包提供了几种常用的优化算法,包括用来求有/无约束的多元标量函数最小值算法,最小二乘法,求有/无约束的单变量函数最小值算法,还有解各种复杂方程的算法

1. 方程求解及求极值

使用SciPy.optimize模块的root和fsolve函数进行数值求解线性及非线性方程求方程的根

利用root函数求方程的解

from scipy.optimize import root
def func(x):
    return x*2 + 2 * np.cos(x)
sol = root(func, 0.3)   # 0.3 估计初始值
print (sol)

 使用fmin,fminbound可以求函数的极值

函数极值求解

import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import fmin,fminbound  
def f(x):    
     return 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值