需要源码请点赞关注收藏后评论区留言私信~~~
一、Scipy中的优化
SciPy.optimize包提供了几种常用的优化算法,包括用来求有/无约束的多元标量函数最小值算法,最小二乘法,求有/无约束的单变量函数最小值算法,还有解各种复杂方程的算法
1. 方程求解及求极值
使用SciPy.optimize模块的root和fsolve函数进行数值求解线性及非线性方程求方程的根
利用root函数求方程的解
from scipy.optimize import root
def func(x):
return x*2 + 2 * np.cos(x)
sol = root(func, 0.3) # 0.3 估计初始值
print (sol)
使用fmin,fminbound可以求函数的极值
函数极值求解
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import fmin,fminbound
def f(x):
return