梯度检验---实例代码

本文介绍了在神经网络和机器学习中进行梯度检验的重要性,它用于验证代价函数的偏导数计算是否正确。梯度检验的核心是确保计算的梯度与微小变化的代价函数差值一致。文中还提供了一段实现梯度检验的代码示例。
摘要由CSDN通过智能技术生成

在完成神经网络或softmax回归时,需要进行梯度检验。实际上,所有利用到求代价函数的偏导数的算法都需要利用到梯度检验。通过梯度检验,可以判断求得的偏导数是否正确。

梯度检验最核心的目的是,检验下面的式子是否成立:
$$$$
其中,J是代价函数,g是代价函数的求导值。

至于更多梯度检验的说明,读者可以参考这篇文章

代码如下:

def simple_quadratic_function(x):
    value = x[0] ** 2 + 3 * x[0] * x[1]

    grad = np.z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值