已知如图:
金标准(标准集) | ||||
预测算法(预测集) | 验证存在(T) | 验证不存在(F) | 合计 | |
预测存在(P) | 预测为正,真实为正(TP) | 预测为正,真实为负(FP) | P(预测为正样本) | |
预测不存在(N) | 预测为负,真实为正(FN) | 预测为负,真实为负(TN) | N(预测为负样本) | |
合计 | T(验证为正样本) | F(验证为负样本) | 所有样本数(P+N或者T+F) |
简化后:
标准集 | ||||
测试集 | 正样本 | 负样本 | 合计 | |
正样本 | TP | FP | P | |
负样本 | FN | TN | N | |
合计 | T | F | P+N或者T+F |
查准率=精确度( precision ):TP / ( TP+FP ) = TP / P
查全率=召回率(recall):TP / (TP + FN ) = TP / T
真阳性率(True positive rate):TPR = TP / ( TP+FN ) = TP / T (敏感性 sensitivity)
假阳性率(False positive rate):FPR = FP / ( FP + TN ) = FP / F (特异性:specificity)
准确率(Accuracy):Acc = ( TP + TN ) / ( P +N )
F-measure:2*recall*precision / ( recall + precision )
ROC曲线:FPR为横坐标,TPR为纵坐标
PR曲线:recall为横坐标,precision 为纵坐标