2023年8月京东户外鞋服市场(京东数据运营)

当前,户外活动的热潮使得户外鞋服市场备受青睐,带动了整个市场的高增长。

根据鲸参谋电商数据分析平台的相关数据显示,今年8月份,京东平台户外鞋服市场的销量为46万+,同比增长约25%;销售额为9500万+,同比增长超过37%。同时,从价格角度看,户外鞋服的市场均价也呈增长趋势,其中环比涨幅约27%,同比涨幅约10%。

*数据源于鲸参谋-行业趋势分析(来自公开渠道获取,数据仅供参考)

从细分类目来看,8月份的热卖品类有冲锋衣裤、户外T恤、徒步鞋、户外防晒衣、户外风衣和登山鞋。其中,冲锋衣裤的市占比较高,该品类的月销额超过3000万,市场占有率将近32%。户外T恤、徒步鞋这两个品类的月销额也在1000万以上,市占均超过10%。此外,户外防晒衣、户外风衣和登山鞋等品类的市占占有率超过5%。

从不同细分市场的销售走势来看,除户外风衣外,同比来看上述品类的销量销额均呈正向增长趋势。其中,冲锋衣裤和户外防晒衣的增速较猛。具体来看,8月份,冲锋衣裤销量同比增长超200%,销额增长约170%;户外防晒衣的销量同比增长约400%,销额同比增长近280%。

*数据源于鲸参谋-类目排行分析(来自公开渠道获取,数据仅供参考)

从品牌角度看,户外鞋服市场中CR10占比超过66%,其中,市占比较高的品牌有骆驼、北面、始祖鸟、伯希和、迪卡侬和哥伦比亚等,这些品牌的市占率均在5%以上。其中,销售成绩排名第一的品牌为骆驼,该品牌的月销额超过1300万,市占率将近14%。

*数据源于鲸参谋-品牌排行分析(来自公开渠道获取,数据仅供参考)

随着人们生活水平的提高,消费者对产品品质的要求也更上一层楼,户外鞋服市场中也是如此,相对来说,价格更高品质更好的产品更受消费者青睐。从产品的价格段角度来看,处于“560元及以上”这一价格区间的产品交易额占比较高,8月份,该价格段产品的月销额将近4500万,市场占有率将近高达47%。

*数据源于鲸参谋-价格段分析(来自公开渠道获取,数据仅供参考)

从热销商品来看,冲锋衣的受欢迎程度较高,在热销TOP10商品榜单中,90%的上榜商品均是不同品牌的冲锋衣,包括骆驼、JEEP SPIRIT、吉普、始祖鸟、凯乐石等品牌。热销TOP3商品均为骆驼品牌的冲锋衣,其中,“骆驼(CAMEL)[丁真同款]三防冲锋衣”的月销额超过100万,总销额排名第一。

*数据源于鲸参谋-热销商品分析(来自公开渠道获取,数据仅供参考)

综合来看,当前户外鞋服市场在随着穿着场景的不断扩展而扩大,从当前市场整体的增速来看,户外鞋服市场的潜力还是比较大的。

鲸参谋数据来源于公开渠道,数据获取可能存在不完全,分析结果仅供参考。

如想要查看京东(淘宝/天猫)全品类的销售数据(行业/品牌/店铺/商品/监控),欢迎搜索“鲸参谋电商数据”,或者直接评论留言和私信(也可接口对接)~

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值