12.第五章 参数假设检验(1)

第五章 参数假设检验(1)

1.假设检验

假设检验问题指通过从总体中抽取一定容量的样本,利用样本来检验总体分布是否具有某种特征。可分为参数型假设检验与非参数型假设检验两种类型,分别适用于总体分布的形式已知和未知的情况。

假设:对于一般的问题,总可以提出一种假设,它是人们认为的关于参数的信息,如正态分布中 μ ≤ μ 0 \mu\le\mu_0 μμ0就是一种假设,原假设(也叫零假设) H 0 H_0 H0的对立面是备择假设 H 1 H_1 H1。参数检验的问题可以形象地写成
H 0 : θ ∈ Θ 0 ⟷ H 1 : θ ∈ Θ 1 H_0:\theta\in \Theta_0\longleftrightarrow H_1:\theta\in \Theta_1 H0:θΘ0H1:θΘ1
这里 H 0 H_0 H0是假设检验的对象, H 0 H_0 H0 H 1 H_1 H1的位置不可调换,它们的地位也不同。一般将等号放在 H 0 H_0 H0中。

假设又可以分为简单假设和复合假设,其中简单假设是指,如果 Θ 0 \Theta_0 Θ0中只包含 Θ \Theta Θ中的一个点,则称 H 0 H_0 H0为简单假设。如 H 0 : a = a 0 H_0:a=a_0 H0:a=a0就是一个简单假设。


要对假设进行检验,可以先求待估参数的一个估计量,如果估计量算出的值与我们的假设情况相差不大,则倾向于接受假设;如果算出的值与我们的假设情况相差很大,则倾向于拒绝假设。

拒绝域 D D D指的是,如果样本 X ∈ D \boldsymbol X\in D XD则拒绝 H 0 H_0 H0。一旦规划出了拒绝域,就可以把样本空间 X \mathscr X X分成两部分,一部分位于拒绝域,另一部分则称为落入接受域。拒绝域 D D D的制定由具体情况决定。

为了便于数学上的处理,又引入检验函数 φ ( x ) \varphi(\boldsymbol x) φ(x)的概念,它与检验是一一对应的,如果 φ ( x ) = 1 \varphi(\boldsymbol x)=1 φ(x)=1则说明 X \boldsymbol X X的观测值 x \boldsymbol x x落入拒绝域内,需要拒绝原假设 H 0 H_0 H0,即
φ ( x ) = { 1 , x ∈ D ; 0 , x ∉ D . \varphi(\boldsymbol x)=\left\{ \begin{array}{l} 1,&\boldsymbol x\in D;\\ 0,&\boldsymbol x\notin D. \end{array} \right. φ(x)={1,0,xD;x/D.
对于只取 0 , 1 0,1 0,1两个值的检验函数,称为非随机化检验,一般我们提到的检验数都是非随机化检验。

如果对于某些样本有 0 < φ ( x ) < 1 0<\varphi(\boldsymbol x)<1 0<φ(x)<1,则称 φ ( x ) \varphi(\boldsymbol x) φ(x)为随机化检验。随机化检验的检验函数可能是
φ ( x ) = { 0 , T ( x ) > c , r , T ( x ) = c , 1 , T ( x ) < c . \varphi(\boldsymbol x)=\left\{ \begin{array}{l} 0, &T(\boldsymbol x)>c,\\ r, &T(\boldsymbol x)=c,\\ 1, &T(\boldsymbol x)<c. \end{array} \right. φ(x)=0,r,1,T(x)>c,T(x)=c,T(x)<c.
如果此时出现了 T ( x ) = c T(\boldsymbol x)=c T(x)=c的情况,可以作一次成功概率为 r r r的实验,根据实验结果来决定是否接受检验。

求解假设检验问题的步骤,是提出假设( H 0 H_0 H0 H 1 H_1 H1)、导出否定域 D D D确定检验统计、求出检验统计量的临界值、得出结论。

2.两类错误

在假设检验问题中,可能会遇到如下两类错误:

  1. 第一类错误:假设 H 0 H_0 H0本来是对的,但样本却落入拒绝域 D D D使得我们认为假设 H 0 H_0 H0是错的从而拒绝了 H 0 H_0 H0。这类错误称为去真错误。
  2. 第二类错误:假设 H 0 H_0 H0本来是错的,但样本却落入接受域 D ˉ \bar D Dˉ使我们认为假设 H 0 H_0 H0是对的从而接受了 H 0 H_0 H0。这类错误称为取伪错误。

在每一个具体的场合,两类错误只会犯一个,并且确定检验方式(拒绝域)后犯两类错误的概率也就确定了。希望犯错误的概率尽可能小,但是一般来说,在样本大小 n n n固定的概率下,两类错误的犯错概率是负相关的。

功效函数:设 φ ( x ) \varphi(\boldsymbol x) φ(x) H 0 : θ ∈ Θ 0 ⟷ H 1 : θ ∈ Θ 1 H_0:\theta\in\Theta_0\longleftrightarrow H_1:\theta\in\Theta_1 H0:θΘ0H1:θΘ1的检验函数,则称
β φ ( θ ) = P θ { 用检验 φ 否定了 H 0 } = E θ [ φ ( X ) ] , θ ∈ Θ \beta_\varphi(\theta)=\mathbf P_\theta\{\text{用检验$\varphi$否定了$H_0$}\}=E_\theta[\varphi(\boldsymbol X)],\theta\in\Theta βφ(θ)=Pθ{用检验φ否定了H0}=Eθ[φ(X)],θΘ
φ \varphi φ的功效函数,也称效函数或势函数。基于效用函数表示两类错误的犯错概率,可以表示为
α φ ∗ ( θ ) = { β φ ( θ ) , θ ∈ Θ 0 , 0 , θ ∈ Θ 1 , β φ ∗ ( θ ) = { 0 , θ ∈ Θ 0 , 1 − β φ ( θ ) , θ ∈ Θ 1 . \alpha_\varphi^*(\theta)=\left\{ \begin{array}{l} \beta_\varphi(\theta),&\theta\in\Theta_0,\\ 0,&\theta \in\Theta_1, \end{array} \right. \quad \beta_\varphi^*(\theta)=\left\{ \begin{array}{l} 0,&\theta\in\Theta_0,\\ 1-\beta_\varphi(\theta),&\theta\in\Theta_1. \end{array} \right. αφ(θ)={βφ(θ),0,θΘ0,θΘ1,βφ(θ)={0,1βφ(θ),θΘ0,θΘ1.
Neyman-Pearson准则:在保证犯第一类错误的概率不超过指定数值 α ∈ ( 0 , 1 ) \alpha\in(0,1) α(0,1)的检验中,寻找犯第二类错误概率尽可能小的检验。

检验的显著性水平:设 φ \varphi φ是一个检验而 0 < α < 1 0<\alpha<1 0<α<1,如果 φ \varphi φ犯第一类错误的概率总是不超过 α \alpha α,则称 α \alpha α是检验 φ \varphi φ的一个水平,称 φ \varphi φ是显著性水平为 α \alpha α的检验。这里显著性水平是不唯一的,所以取所有水平中最小的那个为真实水平,即 sup ⁡ { β φ ( θ ) , θ ∈ Θ 0 } \sup\{\beta_\varphi(\theta),\theta\in\Theta_0\} sup{βφ(θ),θΘ0}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值